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Abstract: Partonic cross sections for the production of massive objects in hadronic col-

lisions receive large corrections when the invariant mass of the initial-state partons is just

above the production threshold. Since typically the center-of-mass energy of the hadronic

collision is much higher than the mass of the heavy objects, it is not obvious that these

contributions translate into large corrections to the hadronic cross section. Using a recent

approach to threshold resummation based on effective field theory, we quantify to which

extent the fall-off of the parton densities at high x leads to a dynamical enhancement of

the partonic threshold region. With the example of Drell-Yan production, we study the

emergence of an effective physical scale characterizing the soft emissions in the process.

We derive compact analytical expressions for the resummed Drell-Yan cross section and

rapidity distribution directly in momentum space. They are free of Landau-pole singular-

ities and are trivially matched onto fixed-order perturbative calculations. Evaluating the

resummed cross sections at NNNLL order and matching onto NNLO fixed-order calcula-

tions, we perform a detailed numerical analysis of the cross section and rapidity distribution

in pp collisions.
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1. Introduction

The Drell-Yan process [1], the production of a lepton pair in hadron-hadron collisions, has

played an important role in establishing the parton picture underlying the description of

hard interactions in QCD. In current experiments, studies of the Drell-Yan cross section

as a function of the invariant mass of the lepton pair are used to search for new heavy par-

ticles such as a hypothetical Z ′ boson, while the differential distributions provide detailed

information about the parton distribution functions (PDFs), including in particular the
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sea-quark distributions. Drell-Yan production also serves as a prototype for other collider

processes, such as Higgs production or the production of new particles.

A lot of effort has been put in obtaining accurate theoretical predictions for the Drell-

Yan process in perturbative QCD. The calculation of the cross section and rapidity distri-

bution at next-to-leading order (NLO) in αs was accomplished in the pioneering work [2].

The first next-to-next-to-leading order (NNLO) result for the cross section was presented

in [3] and confirmed much later in [4]. The rapidity distribution at NNLO was derived

in [5, 6], while the fully differential cross section was obtained recently in [7, 8].

As the invariant mass M of the lepton pair approaches the center-of-mass energy of

the collision, there is less and less phase space available for the emission of QCD radia-

tion. After the cancellation of virtual and real soft divergences large Sudakov logarithms

remain, because the scale associated with the soft radiation is much smaller than M . These

“threshold logarithms” threaten the convergence of the perturbative expansion and need

to be resummed to all orders. For the inclusive cross section dσ/dM2 this was accom-

plished in the seminal papers [9, 10] based on the solution of certain evolution equations

in Mellin moment space (see also [11, 12]). The generalization of this method to the Drell-

Yan rapidity distribution was obtained in [13]. Recent analyses of threshold resummation

for the rapidity distribution in Drell-Yan or electroweak gauge boson production can be

found in [14, 15] in next-to-leading logarithmic (NLL) approximation, while in [16, 17] the

resummation is extended to the next-to-next-to-next-to-leading logarithmic (N3LL) order.

Because the PDFs are strongly suppressed in the endpoint region x → 1, the cross

section dσ/dM2 is a steeply falling function as M approaches the kinematical endpoint√
s. In fact, in a typical experiment it will not be possible to observe Drell-Yan pairs

with masses exceeding about one half of the center-of-mass energy. For instance, at the

LHC one does not expect to discover new heavy particles with masses in the 10 TeV range.

In practice, one is therefore never in a region where the ratio τ = M2/s approaches 1.

Since threshold resummation deals with logarithms of the form ln(1 − τ), it is then not

obvious why such terms should be treated on different footing than other higher-order

terms. In view of this, it is surprising that large resummation effects were recently claimed

to be important for the Drell-Yan rapidity distribution as measured by the E866/NuSea

collaboration [18]. Specifically, ref. [15] claims that for
√
s = 38.76 GeV and M = 8GeV

(corresponding to τ ≈ 0.04) the resummation of threshold logarithms at NNLL order

would lower the cross section by about 30% compared with the fixed-order NLO result,

whereas the fixed-order NNLO corrections increase it by a small amount [5, 6]. However,

significantly smaller resummation effects were found by other authors for LHC kinematics

(M = 115 GeV and
√
s = 14 TeV) [16] and for W -boson production at RHIC (M =

80.4 GeV and
√
s = 500 GeV) [14]. An argument why threshold resummation effects could

be important even if τ ≪ 1 has been given in refs. [19, 20]. The idea is that the sharp

fall-off of the parton luminosity at large x dynamically enhances the contribution of the

partonic threshold region z = M2/ŝ → 1, i.e., the region where the center-of-mass energy√
ŝ of the initial-state partons is just sufficiently large to produce the Drell-Yan pair. It

could then be important to resum logarithms of the form ln(1 − z) in the hard partonic

cross section. However, since (1 − z) is not related to a small ratio of external physical
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scales, it is not obvious how to give a formal justification of this argument.

To study this question quantitatively and to assess the importance of resummation

effects for the Drell-Yan rapidity distribution were the main motivations for the present

work. To do so, we use a recent approach to Sudakov resummation based on effective

field theory [21, 22]. Contrary to the standard treatment in Mellin moment space, this

framework completely separates the effects associated with different scales in the problem,

thereby avoiding the Landau-pole ambiguities inherent in the standard approach. It then

uses renormalization-group (RG) evolution to resum logarithms of scale ratios. The resum-

mation is performed directly in momentum space, which makes it simpler to compare to

and match onto fixed-order calculations. Our framework is particularly well suited to study

the resummed rapidity distribution, for which we derive an exact analytic expression as a

one-dimensional integral over PDFs. Using the convergence properties of the perturbative

expansion after scale separation as the primary criterion, we study in detail how and under

which circumstances an effective physical scale µs ≪M emerges, which is associated with

the soft emission in the process. Our approach resums logarithms of the ratio M/µs to all

orders in perturbation theory.

Our main findings can be summarized as follows:

i. In the true endpoint region τ → 1, the effective soft scale µs is an order of magnitude

smaller than the naive guess M(1 − τ). For PDFs behaving like fi/N (x) ∼ (1 − x)bi

near x → 1, we find µs ≈ λ−1M(1 − τ) with λ ≈ 2 + bq + bq̄ = O(10). This result

provides a formal justification to the argument of a dynamical enhancement of the

partonic threshold region due to the fall-off of parton densities.

ii. The dynamical enhancement of the threshold contributions remains effective down

to moderate values τ ≈ 0.2, while at very small τ values the parameter λ decreases

to about 2. This reflects the fact that for small x values the fall-off of the PDFs is

much weaker than for large x.

iii. Even far away from the true threshold the Drell-Yan cross section receives its domi-

nant contributions from those terms in the hard partonic cross section that are leading

in the limit z → 1. Assuming this is true for other processes as well, the evaluation

of virtual corrections plus soft emissions provides a simple and efficient way to obtain

useful approximations for higher-order perturbative corrections.

iv. With the appropriate choice of the effective soft scale µs, the convergence of the

perturbative expansion is greatly improved by the resummation. However, for small

Drell-Yan masses the terms beyond O(α2
s) in the resummed expression for the cross

section are numerically unimportant. We thus do not confirm the large impact of

threshold resummation on the Drell-Yan rapidity distribution reported in [15]. For

larger masses the effects can be significant. For instance, the experiment E866/NuSea

has reported data up to M = 16.85 GeV (corresponding to τ ≈ 0.19) [18]. We find

that at M = 16 GeV resummation effects enhance the fixed-order predictions for the

cross section by about 25% at NLO, and 7% at NNLO.
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v. For the case of the integrated cross-section dσ/dM2, we perform a detailed compar-

ison with the traditional resummation approach in moment space. Similar to the

case of deep-inelastic scattering (DIS) in the region x → 1, we find that the two

approaches are equivalent up to power corrections, which turn out to be numerically

small. An important conceptual difference is that in the effective-theory approach

the running coupling is evaluated at physical short-distance scales depending only

on the external variables s and M (and perhaps the rapidity Y ). In this way, the

Landau-pole ambiguities inherent in the standard approach are avoided.

We begin our analysis discussing the structure of the hard-scattering kernels relevant

for the Drell-Yan rapidity distribution in fixed-order perturbative QCD. In section 3 we

use the framework of soft-collinear effective theory (SCET) [23 – 25] to derive the standard

factorization formula for the partonic cross section in the limit z → 1 in terms of hard

and soft functions, which we define in terms of Wilson coefficients of operators in the

effective theory. The solutions to the RG equations obeyed by these coefficients are derived

in section 4. With these results at hand, we present exact analytic expressions for the

resummed Drell-Yan cross section and rapidity distribution. A detailed numerical analysis

of our results is presented in section 5. After choosing the hard and soft matching scales

in the effective theory by analyzing the perturbative expansions of the Wilson coefficient

functions, we investigate the stability of the results under scale variations and discuss

the impact of the resummation. Before concluding, we discuss the connection with the

conventional moment-space approach.

2. Fixed-order calculation and the threshold region

We consider the production of a lepton pair with invariant mass M in hadron-hadron

collisions at center-of-mass energy
√
s (Drell-Yan process), focusing for simplicity on the

reaction N1+N2 → γ∗+X followed by γ∗(q) → l−+ l+. Our goal is to calculate the double

differential cross section in the variables M2 = q2 and Y = 1
2 ln q0+q3

q0−q3 , where Y denotes the

rapidity of the lepton pair in the center-of-mass frame. Up to power corrections this cross

section can be calculated in perturbative QCD and expressed in terms of convolutions of

short-distance partonic cross sections with PDFs:

d2σ

dM2dY
=

4πα2

3NcM2s

∑

i,j

∫
dx1 dx2 C̃ij(x1, x2, s,M, µf ) fi/N1

(x1, µf ) fj/N2
(x2, µf ) . (2.1)

Here fi/N (x, µf ) is the probability of finding a parton i with longitudinal momentum frac-

tion x inside the hadron N , and µf is the factorization scale. The hard-scattering kernels

C̃ij have an expansion in powers of the strong coupling αs. The sum extends over all

possible partonic channels contributing at a given order in this expansion. At leading or-

der (∼ α0
s) only the channels (ij) = (qq̄), (q̄q) contribute, while at NLO (∼ αs) one must

include (ij) = (qq̄), (q̄q), (qg), (gq), (q̄g), (gq̄) in the sum.

It will be useful for our purposes to introduce the ratios

τ =
M2

s
, z =

M2

ŝ
=

τ

x1x2
, (2.2)
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where ŝ = x1x2s is the center-of-mass energy squared of the partonic subprocess that

creates the lepton pair. This determines the maximum energy transferred to the leptons

and the maximum invariant mass M they can have. In [5] the coefficient functions C̃ij are

expressed in terms of the variable z and a second quantity

y =
x1

x2
e−2Y − z

(1 − z)(1 + x1

x2
e−2Y )

. (2.3)

These variables take values on the intervals 0 ≤ y ≤ 1 and τ ≤ z ≤ 1 subject to the

condition that the parton momentum fractions

x1 =

√
τ

z

1 − (1 − y)(1 − z)

1 − y(1 − z)
eY , x2 =

√
τ

z

1 − y(1 − z)

1 − (1 − y)(1 − z)
e−Y (2.4)

do not exceed 1. The allowed range for the rapidity is such that 2|Y | ≤ ln(1/τ). We then

define new kernels via

C̃ij(x1, x2, s,M, µf ) =

∣∣∣∣
dz dy

dx1 dx2

∣∣∣∣
Cij(z, y,M, µf )

[1 − y(1 − z)][1 − (1 − y)(1 − z)]
. (2.5)

At NLO the explicit results for these functions can be written in the form (with αs ≡ αs(µf )

and eq denoting the electric charges of the quarks in units of e) [5]

Cqq̄

e2q
= δ(1 − z)

δ(y) + δ(1 − y)

2

[
1 +

CFαs

π

(
3

2
ln
M2

µ2
f

+
2π2

3
− 4

)]
(2.6)

+
CFαs

π

{
δ(y) + δ(1 − y)

2

[
(1 + z2)

[
1

1 − z
ln
M2(1 − z)2

µ2
fz

]

+

+ 1 − z

]

+
1

2

[
1 +

(1 − z)2

z
y(1 − y)

] [
1 + z2

1 − z

([
1

y

]

+

+

[
1

1 − y

]

+

)
− 2(1 − z)

]}
,

Cqg

e2q
=
TFαs

2π

{
δ(y)

[
(
z2 + (1 − z)2

)
ln
M2(1 − z)2

µ2
fz

+ 2z(1 − z)

]

+

[
1 +

(1 − z)2

z
y(1 − y)

] [(
z2 + (1 − z)2

) [1

y

]

+

+ 2z(1 − z) + (1 − z)2y

]}
.

The µf -dependent terms can be derived from the fact that the cross section in (2.1) is

scale independent, while the PDFs obey the DGLAP evolution equations [26 – 28]. The

remaining functions follow from the symmetry relations

Cq̄q = Cqq̄ , Cq̄g = Cqg , Cgq = Cgq̄ = Cqg|y→1−y . (2.7)

The hard-scattering kernels at NNLO have been calculated in [5, 6] and are available in

the form of a computer program [29].

The explicit expressions for the coefficient functions given above contain terms that

are singular in the “partonic threshold region” z → 1, in which the center-of-mass energy
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of the parton subprocess is just large enough to create a lepton pair with invariant mass M .

Indeed, the arguments of the logarithms in (2.6) suggest the relevance of two mass scales:

a “hard” scale µh ∼ M , and a “soft” scale µs ∼ M(1 − z)/
√
z =

√
ŝ (1 − z). Physically,

the hard scale is set by the invariant mass of the lepton pair, while the soft scale is of the

order of the energy of the remnant jet X produced in the collision. In the region of parton

kinematics where z → 1 these scales are separated, µh ≫ µs, in which case the coefficient

functions contain large logarithms irrespective of the choice of the factorization scale µf .

Threshold resummation for the Drell-Yan cross section [9 – 12] aims at resumming these

logarithms to all orders in perturbation theory.

Let us return to the structure of the relations (2.6) and identify the leading singular

terms in the partonic threshold region. They are contained in Cqq̄ and up to NLO multiply

δ-functions in the variable y. Beyond NLO some of the leading singular terms in the

expressions obtained in [5] multiply nontrivial functions of y, but since the y-dependence

of the parton variables x1 and x2 in (2.4) is subleading in the z → 1 limit one can always

rearrange the expressions in such a way that the leading singular terms multiply δ-functions

in y. Explicitly, we then obtain

Cqq̄ =
δ(y) + δ(1 − y)

2
e2q C(z,M, µf ) +Csubl

qq̄ , (2.8)

where

C(z,M, µf ) = δ(1 − z) +
CFαs

π

{
δ(1 − z)

(
3

2
L+

2π2

3
− 4

)
+ 2

[
Lz

1 − z

]

+

}

+CF

(αs

π

)2 [
CFPF (z) + CAPA(z) + TFnfPf (z)

]
, (2.9)

and we have defined L = ln(M2/µ2
f ) and Lz = ln[M2(1 − z)2/µ2

fz]. The terms in the

first line can be readily read off from (2.6). The two-loop coefficients Pi(z) are given in

appendix A. Note that the factor z in the argument of the logarithm Lz could be set to 1

at leading order, but it is correctly reproduced by our resummation formula below and so

we will keep it. The goal of this paper is to derive a formalism that resums these leading

terms to all orders in perturbation theory.

Upon performing the integration over y, the leading singular terms in (2.9) give rise

to the following contribution to the cross section:

d2σthresh

dM2dY
=

4πα2

3NcM2s

∑

q

e2q

∫
dz

z
C(z,M, µf ) (2.10)

×
[
fq/N1

(
√
τ eY , µf ) fq̄/N2

(
√
τ/z e−Y , µf ) + fq/N1

(
√
τ/z eY , µf ) fq̄/N2

(
√
τ e−Y , µf )

2

+(q ↔ q̄)

]
.

The lower limit of the z integral is
√
τ e∓Y , as appropriate for each of the two terms. At

tree level, we recover the parton-model result

d2σ

dM2dY
=

4πα2

3NcM2s

∑

q

e2q
[
fq/N1

(
√
τ eY , µf ) fq̄/N2

(
√
τ e−Y , µf ) + (q ↔ q̄)

]
. (2.11)
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We also note that integrating over rapidity, we obtain for the leading singular terms in the

single-differential cross section

dσthresh

dM2
=

4πα2

3NcM2s

∑

q

e2q

∫
dx1

x1

dx2

x2
C(z,M, µf )

[
fq/N1

(x1, µf ) fq̄/N2
(x2, µf ) + (q ↔ q̄)

]
,

(2.12)

where z = τ/(x1x2), and the integration is restricted to the region where x1x2 ≥ τ . This

result can be rewritten in the more convenient form

dσthresh

dM2
=

4πα2

3NcM2s

∫ 1

τ

dz

z
C(z,M, µf ) ff(τ/z, µf ) , (2.13)

where

ff(y, µf) =
∑

q

e2q

∫ 1

y

dx

x

[
fq/N1

(x, µf ) fq̄/N2
(y/x, µf ) + (q ↔ q̄)

]
(2.14)

denotes the Mellin convolution of the PDFs.

In the following section we will derive a factorization formula for the coefficient

C(z,M2, µf ) using methods of effective field theory. The result is

C(z,M, µf ) = H(M,µf )S(
√
ŝ (1 − z), µf ) , (2.15)

where H and S will be referred to as hard and soft functions, respectively, and will be

defined in terms of Wilson coefficients of operators in SCET. The calculation of the com-

ponents H and S at any order in perturbation theory is much simpler than the calculation

of the Drell-Yan cross section at the same order. Eq. (2.15) thus provides an approxi-

mation to the cross section that requires a minimal amount of calculational work. The

all-order resummation of the partonic threshold logarithms is then achieved by solving RG

equations.

It must be emphasized at this point that the variable z is not set by external kinematics,

but instead is integrated over the interval between τ = M2/s and 1. It is therefore necessary

to specify under which conditions the partonic threshold region requires special attention.

For instance, also in inclusive processes such as e−e− → hadrons there are kinematical

situations where scales much smaller than the center-of-mass energy are important, such

as the emission of a soft gluon into the final state. It is a well-known fact, however, that

upon integration over the entire phase space the perturbation series is insensitive to scales

lower than
√
s at leading power.

There are two limits in which the threshold contributions are parametrically enhanced.

First, if the invariant mass of the lepton pair is near the kinematic limit set by the total

center-of-mass energy of the hadron-hadron collision, then τ ≈ 1 and hence z ≥ τ is always

near 1. Threshold resummation is necessary in this case and proceeds in close analogy to

the resummation of threshold logarithms for the DIS structure functions for x→ 1 [9 – 12].

In practice, the region τ ≈ 1 is irrelevant for phenomenology, since the strong suppression

of the PDFs near the endpoint implies a very low parton luminosity in this case.

A second way in which the threshold contributions can be enhanced arises dynamically,

if the weight function multiplying the hard-scattering kernel under the z-integral is steeply

– 7 –
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Figure 1: Fall-off of the parton luminosity function ff(y, µf) for µf = 8GeV. The dashed lines show

the asymptotic behavior for small and large y.

falling with (1 − z) [19, 20]. In this case threshold resummation can be justified even if

τ is much less than 1. In practice, such a behavior has to result from the fall-off of the

parton densities with increasing x. Consider for simplicity the total cross section dσ/dM2,

for which the relevant combination of PDFs is given by the function ff(y, µf) in (2.14).

Figure 1 shows that this function is indeed very steeply falling with y. Taking µf = 8 GeV,

one finds that ff(y, µf) ∝ ya for y → 0 and ff(y, µf ) ∝ (1 − y)b for y → 1, where a ≈ −1.8

and b ≈ 11. The figure shows that the first form reasonably well describes the behavior for

y < 0.05, while the second form holds for y > 0.3. Using these asymptotic forms for the

parton luminosity function, we find that for τ < 0.05

dσthresh

dM2
≈ 4πα2

3NcM2s
ff(τ, µf )

∫ 1

τ

dz

z
z−a C(z,M, µf ) , (2.16)

while for τ > 0.3

dσthresh

dM2
≈ 4πα2

3NcM2s
ff(τ, µf )

∫ 1

τ

dz

z

(
1 − τ/z

1 − τ

)b

C(z,M, µf ) . (2.17)

In the first case the cross section is given by a low-order moment of the hard-scattering

kernel C, in which case the partonic threshold region z → 1 is not parametrically enhanced.

In the second case, on the other hand, in the limit where we treat the exponent b as a large

parameter, the z integral receives important contributions only from the region where

(1 − z) < (1 − τ)/b. Even for τ values not near 1 there is thus a parametric enhancement

of the partonic threshold region, which turns the threshold logarithms into logarithms of

the exponent b. The intermediate range 0.05 < τ < 0.3 is a transition region, in which the

dynamical enhancement of the threshold region ceases to be effective as τ is lowered.

While, as we have just discussed, the dominance of the partonic threshold region can-

not be justified parametrically for τ < 0.05, it nevertheless appears that even in this case

the Drell-Yan cross section and rapidity distribution are well approximated by keeping only

the leading singular terms in the hard-scattering kernel (2.8). The reason is an inherent

– 8 –
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] Q = 38.76 GeV
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µf = M

Figure 2: Comparison of the complete fixed-order results (solid lines) and the contributions arising

from the leading singular terms (dashed lines) to the Drell-Yan rapidity distribution at different

orders in perturbation theory. On the left we use the PDF sets MRST01LO, MRST04NLO, and

MRST04NNLO, as appropriate to the order of the calculation; in the right plot MRST04NNLO is

used throughout.

property of the hard-scattering kernel, which appears to receive the largest radiative cor-

rections from the region of phase space corresponding to Born kinematics. In other words,

the effects of hard real emissions appear to be suppressed compared with virtual correc-

tions and soft emissions. To illustrate this point, we show in figure 2 the full fixed-order

predictions for the Drell-Yan rapidity distribution at M = 8GeV and
√
s = 38.76 GeV and

compare them to the results obtained by keeping only the threshold terms in the hard-

scattering kernel. We use the MRST sets of PDFs compiled in [30]. Throughout our work

we use the three-loop running coupling αs(µ) normalized to αs(MZ) = 0.1167, and we take

nf = 5 for the number of light quark flavors. In the right plot we use the same NNLO

parton densities for all curves, so that the size of the different perturbative corrections to

the hard-scattering kernel can be read off directly. Since our main focus in this work is on

the behavior of the perturbative expansion of the hard-scattering kernel, we will from now

on always use the set MRST04NNLO for the PDFs. Even though τ ≈ 0.04 is very small in

this example, we observe that at central rapidity about 80% of the NLO correction and 63%

of the NNLO correction arise from the leading singular terms. For the total cross section

dσ/dM2 about 93% of the NLO correction and 97% of the NNLO correction are accounted

for by the leading singular terms. If we lower the factorization scale to µf = M/2, then

the leading singular terms come even closer to reproducing the fixed-order results.

3. Derivation of the factorization formula

The factorization theorem (2.15) for the leading singular terms in the hard-scattering kernel

C has been established a long time ago [9 – 12]. In particular, it has been understood that

the soft function S can be represented as the vacuum expectation value of a certain Wilson

loop of soft gluon fields. Nevertheless we find it useful to rederive this formula using

methods of effective field theory. The advantage of this approach is that we will relate

the hard and soft functions, H and S, to Wilson coefficients of operators in the effective
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theory, which obey certain RG equations. Solving these equations we accomplish threshold

resummation directly in momentum space.

In the framework of SCET the standard factorization formula (2.1) for the Drell-Yan

cross section has been discussed in [31]. However, the issue of Glauber gluons [32, 33] has

not yet been addressed in the effective theory. Glauber-gluon interactions have presented

an important complication in the factorization analysis of the Drell-Yan process [34, 35],

and it would be worthwhile to rederive their cancellation using SCET. As discussed below,

Glauber gluons do not affect the factorization of the hard-scattering kernel C(z,M, µf ) in

the threshold region.

The threshold resummation for the total cross section dσ/dM2 has been performed

in [36] using an effective-theory variant of the traditional Mellin moment-space approach. In

the present paper we go beyond these works by presenting a derivation of the factorization

formula (2.15) in SCET and performing the threshold resummation directly in z space.

This will provide us with the tools to discuss the relevance of resummation away from the

true threshold, i.e., for M2 much smaller than s.

We begin with the standard formula for the Drell-Yan cross section,

dσ =
4πα2

3sq2
d4q

(2π)4

∫
d4x e−iq·x 〈N1(p1)N2(p2)|(−gµν)Jµ†(x)Jν(0)|N1(p1)N2(p2)〉 , (3.1)

where Jµ =
∑

q eq q̄γ
µq is the electromagnetic current. To derive the factorization theorem,

we match the product of currents onto operators in SCET. The matching proceeds in two

steps, and the corresponding Wilson coefficients are the hard function H and the soft

function S, respectively. The remaining effective-theory matrix element can be identified

with the PDFs. A similar two-step matching procedure has been used in many SCET

applications. In particular, the factorization theorem for DIS in the region x → 1 was

derived in SCET by proceeding this way [22].

In the present paper we are solely interested in the factorization of the hard-scattering

coefficient C(z,M, µf ). For this purpose, we can simplify the effective-theory analysis

by considering (3.1) with partonic instead of hadronic matrix elements. These partonic

matrix elements correspond directly to the hard-scattering coefficients, and the hadronic

cross sections are then obtained after convoluting the results with the PDFs. An effective-

theory analysis of the hadronic matrix elements would be more complicated because of

their sensitivity to nonperturbative physics governed by the scale ΛQCD, which does not

enter the hard-scattering kernels.

Note that the product of current operators in the matrix element in (3.1) is not time-

ordered. This is in contrast to the case of DIS, where the decay rate can be obtained from

the discontinuity of a time-ordered product of currents. It is not possible to rewrite (3.1)

in the same way, because the imaginary part of the time-ordered product also gets contri-

butions from virtual corrections to N1 +N2 → X, where X is a purely hadronic final state.

A path integral framework to analyze operator products that are not time ordered is the

Keldysh formalism [37, 38], which we review in appendix C. In our discussion below, the

operator ordering does not lead to any complications, but it implies that the soft function

– 10 –
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q̄

q

ℓ+

ℓ−

H

Figure 3: Soft gluon emissions from the initial-state partons in Drell-Yan production.

is not given by Feynman diagrams, but appropriate cuts of such diagrams, as explained

in [39].

3.1 Derivation in SCET

Before entering the technicalities of the discussion of factorization in SCET, it is useful to

understand the physics behind the factorization theorem (2.15) by means of a simple, intu-

itive argument. Consider the special kinematics of Drell-Yan production in the (partonic)

threshold region, as illustrated in figure 3. Because the partonic center-of-mass energy is

just above the invariant mass of the produced Drell-Yan pair, only soft emissions from the

initial-state partons are allowed. As is well known, these soft emissions are described by

eikonal interactions and exponentiate into Wilson lines. Furthermore, to leading power

they leave the incoming partons on the mass shell, so that the production of the Drell-Yan

pair is described by an on-shell quark form factor.

We will now formalize this argument using the language of effective field theory. The

effective theory is constructed by introducing fields for the momentum regions that con-

tribute to the matrix elements in the given kinematics. As stressed above, for our purposes

it is sufficient to analyze partonic matrix elements. To distinguish the different momentum

modes, we introduce the light-cone decomposition

pµ = (n · p) n̄
µ

2
+ (n̄ · p) n

µ

2
+ pµ
⊥ ≡ pµ

+ + pµ
− + pµ

⊥ , (3.2)

where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) are two light-like reference vectors (n · n̄ = 2)

in the directions of the colliding partons. We denote the small expansion parameter by

ǫ = (1 − z) ≪ 1 and quote the components (p+, p−, p⊥) of parton momenta. The relevant

momentum regions are

hard: ph ∼
√
ŝ (1, 1, 1) ,

hard-collinear: phc ∼
√
ŝ (ǫ, 1,

√
ǫ) ,

anti-hard-collinear: phc ∼
√
ŝ (1, ǫ,

√
ǫ) ,

soft: ps ∼
√
ŝ (ǫ, ǫ, ǫ) ,

where the large momentum scale in the process is set by the partonic center-of-mass en-

ergy
√
ŝ. In the first matching step, the contributions from the hard region are absorbed
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into Wilson coefficients, while the remaining contributions are represented by fields in the

effective theory. The version of the effective theory with fields scaling in the above way is

often called SCETI. Note that, while in many applications the soft scale is associated with

nonperturbative physics, in our case p2
s ∼ ŝ(1 − z)2 is of order the mass of the hadronic

final-state jet and assumed to be in the perturbative domain. As explained above, the

kinematics of the Drell-Yan process near threshold is such that the hadronic final state

is made up of soft partons; the virtuality of the hard-collinear partons is parametrically

larger than the jet mass: p2
hc ∼ p2

hc
∼ ŝ(1 − z) ≫M2

X ∼ ŝ(1 − z)2.

The potential contribution from Glauber gluons [32, 33] presents a challenge when

deriving the standard factorization theorem of the Drell-Yan cross section into PDFs con-

voluted with hard partonic cross sections [34, 35]. However, the Glauber region does

not present an additional difficulty for the factorization of the hard-scattering coefficient

C(z,M, µf ) in the threshold region, which we will derive below. The hard-scattering co-

efficient is given by the on-shell qq̄ → l+l− +X cross section, so that for its factorization

only Glauber exchanges involving active quarks need to be studied. The momenta of the

Glauber gluons relevant for the threshold region scale as p ∼
√
ŝ(ǫ, ǫ,

√
ǫ), and these glu-

ons are thus not allowed in the hadronic final state, which is assumed to have M2
X ∼ ǫ2ŝ.

Writing down the loop integrals for Glauber exchanges between the two inital-state quarks,

one finds that they are scaleless and vanish in dimensional regularization. In more physical

terms, this means that the Glauber contribution is accounted for already by the standard

momentum regions introduced above.

In order not to clutter the notation, we consider for the moment a single quark fla-

vor with charge eq = 1. We thus match the current Jµ = ψ̄γµψ onto an effective cur-

rent operator in SCET containing a hard-collinear quark and an anti-hard-collinear anti-

quark [22, 31, 40, 41]. At leading power in ǫ, this yields

Jµ(0) →
∫
ds dt C̃V (s, t, µf )

(
ξ̄hcWhc

)
(sn) γµ

⊥
(
W †hcξhc

)
(tn̄) , (3.3)

where Whc and Wh̄c are the usual hard-collinear (along the n̄-direction) and anti-hard-

collinear (along the n-direction) Wilson lines of SCET. Note that the matching relation for

the (transverse) vector current does not include a two-gluon operator at leading power in

the effective theory. Such an operator would arise, however, in the corresponding matching

relation for a scalar current relevant for Higgs production. Mixed quark-gluon operators

corresponding to the (ij) = (gq), (qg), (q̄g), and (gq̄) scattering channels are power sup-

pressed. Accordingly, the corresponding hard-scattering kernels Cij do not contain terms

that are singular in the limit z → 1, as is explicitly seen in (2.6). The Fourier transform of

the position-space Wilson coefficient

CV (−n̄ · p1 n · p2, µf ) =

∫
ds dt C̃V (s, t, µf ) e−isn̄·p1−itn·p2 (3.4)

is a function of the product of the large light-cone momentum components carried by the

quark fields. In our case, n̄ · p1 n · p2 = q2 is equal to the hard scale set by the mass of the

Drell-Yan pair. As a result the Wilson coefficient is evaluated at the time-like momentum
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transfer carried by the current, CV (−q2 − iǫ, µf ). The iǫ prescription is required since

this function has a branch cut along the positive real q2 axis. Note that the same Wilson

coefficient CV appears in DIS, but evaluated at space-like momentum transfer [22, 36, 41].

The coefficient CV can be determined by on-shell matching; indeed, it is simply given by

the on-shell massless form factor in QCD [21]. The Drell-Yan cross section involves the

current squared, so that the hard function in (2.15) is given by

H(M,µf ) = |CV (−M2 − iǫ, µf )|2 . (3.5)

The expression for the coefficient CV up to O(α2
s) was derived in [22, 36] and can be found

in appendix B.

At leading power in ǫ, only the n ·As component of the soft gluon field couples to the

hard-collinear fields. These eikonal interactions can be represented by Wilson lines. In the

effective theory this is achieved by redefining the hard-collinear fields as [24, 42]

ξhc(x) → Sn(x−) ξ
(0)
hc (x) , Aµ

hc(x) → Sn(x−)A
µ(0)
hc (x)S†n(x−) , (3.6)

which implies (W †hcξhc)(x) → Sn(x−) (W †hcξhc)
(0)(x). Here

Sn(x) = P exp

(
ig

∫ 0

−∞
ds n · As(x+ sn)

)
(3.7)

is a soft Wilson line along the n light-cone. The same redefinition, but with n and n̄

interchanged, decouples the soft gluon field also from the anti-hard-collinear fields. As a

result, the current operator

Jµ(0) →
(
ξ̄hcWhc

)(0)
(sn) γµ

⊥
(
S†n̄Sn

)
(0)
(
W †hcξhc

)(0)
(tn̄) (3.8)

splits into three parts, which no longer interact with each other. In the same way, the

matrix element for the Drell-Yan process factorizes in the form

〈N1(p1)N2(p2)|(−gµν)Jµ†(x)Jν(0)|N1(p1)N2(p2)〉

→ 1

Nc

∣∣CV (−M2 − iǫ, µf )
∣∣2 ŴDY(x, µf ) 〈N1|(ξ̄hcWhc)

(0)(x+)
/̄n

2
(W †hcξhc)

(0)(0)|N1〉

×〈N2|(ξ̄hcWhc)
(0)(0)

/n

2
(W †

hc
ξhc)

(0)(x−)|N2〉 . (3.9)

To obtain this expression, we have Fierz rearranged the fermion fields and have averaged

over the color of the external states. We have simplified the Dirac algebra making use

of the projection properties /n ξhc = 0 and /̄n ξhc = ξhc of the hard-collinear fermion fields

(and likewise /̄n ξhc = 0 and /n ξhc = ξhc for the anti-hard-collinear fields). Also, we have

neglected the power-suppressed dependence of the hard-collinear matrix element on x−
and x⊥ (x+ and x⊥ for the anti-hard-collinear matrix element), using the fact that up to

power corrections the incoming partons fly along the beam axis. In more technical terms,

we have multi-pole expanded the corresponding fields to leading power [25, 43]. The soft

matrix element ŴDY(x, µf ) (not to be confused with the hard-collinear Wilson lines) is a

closed Wilson loop formed from the product of the soft Wilson lines in the two currents,

ŴDY(x, µf ) =
1

Nc
〈0|Tr T̄

[
S†n(x)Sn̄(x)

]
T
[
S†n̄(0)Sn(0)

]
|0〉 , (3.10)
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where the trace is over color indices, and the operator T̄ makes explicit that the Wilson

lines in the complex conjugate current Jµ† are anti-time-ordered. A detailed discussion of

the operator ordering is given in appendix C. It will become evident in section 3.2 that

the function ŴDY(x, µf ) is closely related to the soft function for the Drell-Yan process.

In the second matching step we lower the renormalization scale below the soft scale

and integrate out the soft fields. Because the soft scale is in the short-distance domain,

this simply amounts to a perturbative calculation of the Wilson loop (3.10).

To make contact with the standard treatment, where the factorization theorem is de-

rived within perturbative QCD, we note that after the decoupling transformation (3.6) the

leading-power Lagrangian in each of the three sectors of the effective theory is completely

equivalent to the QCD Lagrangian. We can thus equally well evaluate the soft function

with QCD Wilson lines instead of soft Wilson lines. The same is true for the hard-collinear

matrix elements, where one can replace

〈N1|(ξ̄hcWhc)
(0)(x+)

/̄n

2
(W †hcξhc)

(0)(0)|N1〉 → 〈N1| ψ̄(x+)
/̄n

2
[x+, 0]ψ(0)|N1〉 , (3.11)

where ψ(x) is the QCD quark field and [x+, 0] a QCD Wilson line of n ·A gluons extending

from 0 to x+.

We have simplified the effective-theory treatment by restricting ourselves to on-shell

partonic instead of hadronic matrix elements, which has the advantage that we do not need

to discuss momentum regions that scale with powers of ΛQCD.1 These momentum regions

cannot enter the hard or the soft functions, and given that the Drell-Yan cross section is

known to factorize for ŝ(1 − z) ≫ Λ2
QCD, we are guaranteed that their presence will not

spoil factorization. The restriction to partonic matrix elements can thus safely be dropped.

The hadronic matrix elements of the form (3.11) are the usual PDFs [44]

fq/N (x, µf ) =
1

2π

∫ ∞

−∞
dt e−ixtn̄·p 〈N(p)| ψ̄(tn̄)

/̄n

2
[tn̄, 0]ψ(0) |N(p)〉 . (3.12)

Inserting the factorized form of the matrix element (3.9) into expression (3.1) for the

cross section, we obtain

dσ

dM2
=

4πα2

3NcM2
|CV (−M2 − iǫ, µf )|2

×
∑

q

e2q

∫
dx1 dx2

[
fq/N1

(x1, µf ) fq̄/N2
(x2, µf ) + (q ↔ q̄)

]

×
∫

d3~q

(2π)32q0
1

2π

∫
d4x ei(x1p1−+x2p2+−q)·x ŴDY(x) . (3.13)

From now on we will drop the iǫ prescription in the argument of CV .

3.2 Kinematic simplifications in the threshold region

To proceed, we need to study the kinematics in the partonic threshold region, where z → 1.

With the expansion parameter ǫ = (1−z) ≪ 1, it is easy to show that in the parton center-

1For DIS at x→ 1, a full factorization analysis (including messenger fields [42]) was performed in [22].
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of-mass system

|~q| ≤
√
ŝ

2
(1 − z) = O(ǫ) ⇒ q0 =

√
ŝ+O(ǫ) . (3.14)

It follows that q0 is parametrically larger than the spatial components of qµ. This obser-

vation implies that the term q0 in the denominator in (3.13) is independent of ~q at leading

power, in which case performing the integral over d3~q yields δ(3)(~x). It also follows that

the rapidity of the Drell-Yan pair in the parton center-of-mass system vanishes at leading

power,

YCMS =
1

2
ln
q0 + q3

q0 − q3
= O(ǫ) , (3.15)

which explains why the rapidity in the laboratory frame, Y = YCMS+ 1
2 ln x1

x2
, is determined

by the ratio x1/x2 at leading power in (1− z), as can be seen from (2.4). Finally, we need

that

(x1p1− + x2p2+ − q)0 =

√
ŝ

2
(1 − z) +O(ǫ2) . (3.16)

Using these results, we obtain at leading power in the z → 1 limit the expression

dσ

dM2
=

4πα2

3NcM2
|CV (−M2, µf )|2

∑

q

e2q

∫
dx1 dx2

[
fq/N1

(x1, µf ) fq̄/N2
(x2, µf ) + (q ↔ q̄)

]

× 1

2
√
ŝ

∫
dx0

2π
ei
√

ŝ(1−z)x0/2 ŴDY(x0, ~x = 0, µf ) , (3.17)

where the integration region over the parton momentum fractions is such that x1x2 ≥ τ ,

so that z = τ/x1x2 ≤ 1. In the final step we introduce the Fourier transform of the

position-space Wilson loop at time-like separation via

WDY(ω, µf ) =

∫
dx0

4π
eiωx0/2 ŴDY(x0, ~x = 0, µf ) . (3.18)

This Wilson loop plays the role of the jet function in DIS in the sense that it describes the

properties of the hadronic final state. It has been introduced previously in [12, 39]. The

Drell-Yan cross section now takes the form

dσ

dM2
=

4πα2

3NcM2s
|CV (−M2, µf )|2

∑

q

e2q

∫
dx1

x1

dx2

x2

[
fq/N1

(x1, µf ) fq̄/N2
(x2, µf )+(q↔ q̄)

]

×
√
ŝWDY(

√
ŝ (1 − z), µf ) , (3.19)

and from comparison with (2.12) and (2.15) we identify the soft function as

S(
√
ŝ (1 − z), µf ) =

√
ŝWDY(

√
ŝ (1 − z), µf ) . (3.20)

We should mention that at leading power in (1 − z) the argument of the soft func-

tion could be simplified as
√
ŝ (1 − z) = M(1 − z)/

√
z ≈ M(1 − z); however, since

the exact expressions (2.6) for the hard-scattering kernels at NLO contain the logarithm

Lz = ln(ŝ(1 − z)2/µ2
f ), we prefer to keep the argument of the soft function in the form

written above.
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4. Momentum-space resummation at large z

At this point we have identified the two components in the factorized expression (2.15) for

the hard-scattering coefficient C(z,M, µf ) with field-theoretic objects defined in terms of

operator matrix elements. The resummation of threshold logarithms arising in the z → 1

region can now be accomplished by solving the RG evolution equations obeyed by these

quantities.

4.1 Evolution of the hard function

The evolution equation for the hard matching coefficient CV evaluated at time-like mo-

mentum transfer and its solution can be obtained from the corresponding results valid for

space-like momentum transfer [21] by analytic continuation. This leads to

d

d lnµ
CV (−M2 − iǫ, µ) =

[
Γcusp(αs)

(
ln
M2

µ2
− iπ

)
+ γV (αs)

]
CV (−M2 − iǫ, µ) . (4.1)

We have reinserted the iǫ regulator, which determines the sign of the imaginary part of

the anomalous dimension. The appearance of the logarithm and its coefficient, the cusp

anomalous dimension Γcusp [45, 46], can be explained using arguments presented in [40].

This term in the evolution equation is associated with Sudakov double logarithms. The

remaining term, γV , accounts for single-logarithmic evolution.

The exact solution to (4.1) is

CV (−M2, µf ) = exp
[
2S(µh, µf ) − aγV (µh, µf ) + iπ aΓ(µh, µf )

]
(4.2)

×
(
M2

µ2
h

)−aΓ(µh,µf )

CV (−M2, µh) ,

where µh ∼ M is a hard matching scale, at which the value of CV is calculated using

fixed-order perturbation theory. Note that the Wilson coefficient at time-like momentum

transfer is a complex quantity. The Sudakov exponent S and the exponents an are given

by [47]

S(ν, µ) = −
αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)

α∫

αs(ν)

dα′

β(α′)
, aΓ(ν, µ) = −

αs(µ)∫

αs(ν)

dα
Γcusp(α)

β(α)
, (4.3)

and similarly for the function aγV . The perturbative expansions of the anomalous di-

mensions and the resulting expressions for the evolution functions valid at NNLO in RG-

improved perturbation theory are collected in appendix B.

4.2 Evolution of the soft function

In order to derive the evolution equation for the soft function it is important to have a

consistent definition of the threshold region. To this end we consider the limit M2 → s

in (3.19), which implies z → 1, since z ≥ τ . The condition x1x2 ≥ τ then implies that
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x1,2 → 1, in which case the DGLAP evolution for the PDFs can be written in the simplified

form

d

d lnµ
fq/N (x, µ) = 2γφ(αs) fq/N (x, µ) + 2Γcusp(αs)

∫ 1

x

dz

z

fq/N (x/z, µ)

[1 − z]+
+ . . . , (4.4)

which is obtained by expanding the Altarelli-Parisi splitting function as

Pq←q(z) =
2Γcusp(αs)

[1 − z]+
+ 2γφ(αs) δ(1 − z) + . . . . (4.5)

This asymptotic form of the splitting function holds to all orders in perturbation theory [48].

The cusp anomalous dimension and the coefficient γφ have been calculated at three-loop

order [49]. They are given in appendix B.

Requiring that the Drell-Yan cross section in the threshold region be independent of

the arbitrary factorization scale µf , we find that the momentum-space Wilson loop obeys

the integro-differential evolution equation

dWDY(ω, µ)

d lnµ
= −

[
4Γcusp(αs) ln

ω

µ
+ 2γW (αs)

]
WDY(ω, µ)

− 4Γcusp(αs)

∫ ω

0
dω′

WDY(ω′, µ) −WDY(ω, µ)

ω − ω′
, (4.6)

where

γW = 2γφ + γV . (4.7)

Curiously, this quantity starts only at two-loop order. The analogous relation in the case of

DIS is γJ = γφ + γV , where the anomalous dimension γJ of the DIS jet function is defined

in analogy with γW in (4.6). Combining the two relations we obtain 2γJ −γW = γV , which

is an exact relation that links the anomalous dimensions of the soft function in Drell-Yan

production and the DIS jet function to the anomalous dimension of the vector current.

The exact solution to the evolution equation (4.6) can be written in the form [21, 50]

WDY(ω, µf ) = exp
[
−4S(µs, µf ) + 2aγW (µs, µf )

]
s̃DY(∂η, µs)

1

ω

(
ω

µs

)2η e−2γEη

Γ(2η)
, (4.8)

where ∂η denotes a derivative with respect to an auxiliary parameter η, which is then

identified with η = 2aΓ(µs, µf ). This result is well defined for η > 0. The solution for

negative η is obtained by analytic continuation. For instance, to obtain the result for

−1
2 < η < 0 we use the identity

∫ Ω

0
dω

f(ω)

ω1−2η
=

∫ Ω

0
dω

f(ω) − f(0)

ω1−2η
+
f(0)

2η
Ω2η, (4.9)

where f(ω) is a smooth test function. For η < −1
2 additional subtractions are required.

The function s̃DY is obtained from the momentum-space Wilson loop by the Laplace

transformation [21]

s̃DY(L,µs) =

∫ ∞

0
dω e−sω WDY(ω, µs) , s =

1

eγEµs eL/2
. (4.10)
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The position-space Wilson loop on the right-hand side of (3.18) can be shown to have the

functional form ŴDY(x0, ~x = 0, µs) = f( i
2x

0µse
γE , αs(µs)) [12, 39], and a straightforward

calculation shows that the function s̃DY(L,µf ) can be expressed in terms of f(t, αs) as

s̃DY(L,µs) = f(e−L/2, αs(µs)) . (4.11)

We can then use the explicit two-loop expression for the position-space Wilson loop ob-

tained in [39] to compute the function s̃DY at two-loop order. The result is presented in

appendix B.

4.3 Resummation of large logarithms

We are now in a position to derive the RG-resummed expression for the hard-scattering co-

efficient C(z,M, µf ) in (2.15), which is given by the product of the solutions (4.2) and (4.8)

for the hard and soft functions. The result can be simplified by eliminating the anomalous

dimension γW using (4.7), and combining the Sudakov exponents using the relation

S(µh, µf ) − S(µs, µf ) = S(µh, µs) − aΓ(µs, µf ) ln
µh

µs
. (4.12)

We find

C(z,M, µf ) = |CV (−M2, µh)|2 U(M,µh, µs, µf )

× z−η

(1 − z)1−2η
s̃DY

(
ln
M2(1 − z)2

µ2
sz

+ ∂η , µs

)
e−2γEη

Γ(2η)
, (4.13)

where η = 2aΓ(µs, µf ), and we have defined the evolution function

U(M,µh, µs, µf ) =

(
M2

µ2
h

)−2aΓ(µh,µs)

exp
[
4S(µh, µs) − 2aγV (µh, µs) + 4aγφ(µs, µf )

]
.

(4.14)

As before, equation (4.13) is valid for η > 0 (µs > µf ). For negative η (µf > µs), integrals

of lnn(1 − z)/(1 − z)1−2η with test functions f(z) must be defined using a subtraction at

z = 1 and analytic continuation in η.

We emphasize that the result (4.13) is formally independent of the scales µh and µs, at

which the matching conditions for the hard and soft functions are evaluated. On the other

hand, the hard-scattering kernel C does depend on the factorization scale µf , at which the

PDFs are renormalized. In practice, a residual dependence on the matching scales arises

when the perturbative expansions of the matching coefficients and anomalous dimensions

are truncated, and this dependence can be used to estimate the remaining perturbative

uncertainties. Setting the three scales µh, µs, and µf equal to each other in the resummed

expression (4.13), one can readily reproduce the leading singular terms for z → 1 in the

fixed-order perturbative QCD expression for the hard-scattering kernel. In this way we

have obtained the two-loop corrections in (2.9).

The final expression (4.13) for the hard-scattering kernel can be evaluated at any

desired order in resummed perturbation theory. Table 1 shows what is required to obtain

different levels of accuracy. In this work we adopt the counting scheme of RG-improved
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RG-impr. PT Log. approx. Accuracy ∼ αn
sL

k Γcusp γV , γφ CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n − 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n − 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n − 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

Table 1: Different approximation schemes for the evaluation of the resummed cross-section

formulae

perturbation theory, where at LO one includes all O(1) terms, at NLO one includes all

O(αs) terms, etc. The large logarithm ln(µh/µs) is counted like O(1/αs). In the literature

on threshold resummation the alternative notation Nn+1LL is often used instead of NnLO.

The leading logarithmic (LL) approximation is listed only for completeness, as it misses

some O(1) terms.

In the following section we will perform a detailed numerical analysis of the Drell-Yan

cross section and rapidity distribution. In most cases of phenomenological relevance the

invariant mass of the Drell-Yan pair will be small compared with the center-of-mass energy,

i.e. τ = M2/s ≪ 1. Nevertheless, it is interesting to briefly consider the limit τ → 1, in

which the need for threshold resummation is justified parametrically (see the discussion in

section 2). In this case the convolution integrals in formula (2.12) for the Drell-Yan cross

section can be performed analytically if a reasonably simple model for the PDFs near the

endpoint is adopted. We parameterize the behavior near x = 1 as

fq/N (x, µf )
∣∣
x→1

= Nq(µf ) (1 − x)bq(µf )
[
1 +O(1 − x)

]
, (4.15)

and similarly for the anti-quark distribution. It then follows that at leading power in (1−y)
the parton luminosity function defined in (2.14) is given by

ff(y, µf) = 2
∑

q

e2q Nq(µf )Nq̄(µf ) (1 − y)1+bq+bq̄
Γ(1 + bq) Γ(1 + bq̄)

Γ(2 + bq + bq̄)
. (4.16)

Furthermore, the sum over flavors is dominated by the terms with the smallest exponent

(bq + bq̄). For example, in pp collisions at one finds bu + bū ≈ 14.4, bd + bd̄ ≈ 10.8, and

bs+bs̄ ≈ 16.0 at µ0 = 3GeV [51]. These exponents increase by a flavor-independent amount

2aΓ(µf , µ0) when µf is raised to larger values, e.g., by about 0.4 at µf = 8 GeV [22]. It

follows that the leading behavior near the endpoint is due to the down-quark contribution.

Introducing the Drell-Yan K-factor as the ratio

dσ

dM2
= K(M2, τ)

dσ

dM2

∣∣∣∣
LO

, (4.17)

we then obtain at leading power

K(M2, τ) = |CV (−M2, µh)|2 U(M,µh, µs, µf )

×(1 − τ)2η s̃DY

(
ln
M2(1 − τ)2

µ2
s

+ ∂η , µs

) e−2γEη Γ(2 + bd + bd̄)

Γ(2 + bd + bd̄ + 2η)
. (4.18)
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This may be compared with the K-factor for DIS at large Bjorken x and momentum

transfer Q2 = −q2, which has been derived in [21] and reads

K(Q2, x) = |CV (Q2, µh)|2 U(Q,µh, µs, µf ) exp
[
−2aγφ(µs, µf )

]

×(1 − x)η j̃DIS

(
ln
Q2(1 − x)

µ2
s

+ ∂η, µs

) e−γEη Γ(1 + bu)

Γ(1 + bu + η)
, (4.19)

where in this case the dominant contribution comes from the valence up-quark, which

has the smallest bq parameter, bu ≈ 4.0 at µf = 3GeV [51]. Obviously the structure of

threshold logarithms is very similar in the two cases once we consider equal hard scales

(Q2 = M2) and compare the small parameter (1 − x) in DIS near the endpoint with the

small parameter (1 − τ)2 in Drell-Yan production. Differences arise from the following

facts: (i) Drell-Yan production has time-like kinematics, whereas DIS probes the nucleon

at space-like momentum transfer. This gives rise to a difference in the hard matching

coefficients |CV |2 starting at one-loop order. (ii) The soft/jet functions in the two cases

are different starting from one-loop order. (iii) The Drell-Yan cross section involves a

convolution with two PDFs, whereas in DIS a single parton density appears. This explains

the different coefficients in front of aγφ and η in the expressions for the K-factors. (iv) For

the same reason, the resulting convolution integrals over the PDFs give rise to different

expressions involving the bq and bq̄ exponents.

There is one more important piece of information that we can extract from the re-

sult (4.18) for the Drell-Yan K-factor. As we have seen, the exponents bq and bq̄ take

rather large values. Therefore, the arguments of the Γ-functions in (4.18) contain the large

quantity (2 + bd + bd̄) ≈ 13. It is straightforward to show that the derivative with respect

to η in the argument of the soft function has the effect of changing the argument of the

logarithm as follows:

ln
M2(1 − τ)2

µ2
s

+ ∂η → ln
M2(1 − τ)2

µ2
s(2 + bd + bd̄)

2
, (4.20)

up to O(1) factors. It follows that a proper choice for the soft matching scale near τ → 1

is

µs ≈
M(1 − τ)

(2 + bd + bd̄)
≈ M(1 − τ)

13
, (4.21)

which is an order of magnitude less than the naive choice M(1 − τ). The fact that the

fall-off of the parton densities strongly favors the large-z region leads to a strong additional

suppression of the effective soft scale.

5. Phenomenological analysis

In this section we perform a detailed numerical analysis of our results. One of our goals is

to study to what extent threshold resummation is important (or even justified) in processes

where the invariant mass of the Drell-Yan pair is not very close to the center-of-mass energy.

We have seen in section 2 that for very small values of the ratio τ = M2/s the threshold

contributions are not parametrically enhanced. Even though empirically these terms still

– 20 –



J
H
E
P
0
7
(
2
0
0
8
)
0
3
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-3

-2

-1

0

1

2

3

µh/M

c n

c1

c2

Figure 4: Dependence of the first two expansion coefficients in the perturbative series for the

hard function on the matching scale µh.

give rise to the dominant contributions to the cross section, there is no need to perform

a resummation of the threshold logarithms. On the other hand, the result (4.21) derived

in the previous section shows that near the true endpoint the threshold logarithms are

enhanced by two effects: the kinematic restriction of the z-integral to the small interval

between τ and 1, as well as the dynamical enhancement from the strong fall-off of the

parton densities. As a result, the appropriate value of the soft matching scale is an order

of magnitude smaller than the naive choice M(1 − τ). From our discussion so far it is not

obvious how to interpolate between these two extreme cases. We now perform a detailed

numerical study to assess the importance of resummation at intermediate values of τ .

5.1 Choices of the matching scales

We begin with a discussion of the proper choice of the matching scales µh and µs, using

the convergence of the perturbative expansions of the matching coefficients CV and s̃DY

in the resummed hard-scattering kernel (2.10) as the primary guiding principle. While

it is obvious that the hard matching scale should be chosen of order M , the choice of

the soft scale is more problematic. Naively, based on the structure of the result (4.13)

one would expect that ln(µ2
s/M

2) should in some sense be identified with the “average”

value of ln[(1 − z)2/z]. Unfortunately, however, the distribution in the variable z is both

singular at z = 1 and not positive definite, so that it does not lend itself to a probabilistic

interpretation. A simple way to avoid large logarithmic contributions would be to make the

scale choice µ2
s/M

2 ∝ [(1−z)2/z] inside the z-integral. However, this would lead to Landau-

pole singularities in the integrand and hence would upset the proper scale separation that

is at the heart of our approach.

Our approach to threshold resummation based on effective field-theory methods ap-

plied directly in momentum space provides a natural way of resolving this question. The

matching scales µh and µs should be chosen such that the perturbative expansions of the

Wilson coefficient functions CV and s̃DY in (4.13) are well behaved. For the case of the soft
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Figure 5: Relative contributions to the Drell-Yan cross section dσ/dM2 at M = 20GeV arising

from the one-loop (left) and two-loop (right) corrections to the soft function s̃DY, as a function of

the soft matching scale µs. The curves are labeled by the corresponding values of τ = M2/s.

function, this criterion should be applied after the integration over z in (2.10) has been

performed. This is the essence of effective field theory: one performs matching calcula-

tions at scales where these calculations can be done in fixed-order perturbation theory, and

use the renormalization group to perform the evolution (“running”) between the different

matching scales.

We begin by applying this criterion to the hard function

H(M,µh) = |CV (−M2, µh)|2 = 1 +
∞∑

n=1

cn

(µh

M

)
[αs(µh)]n . (5.1)

Figure 4 shows the dependence of the expansion coefficients c1 and c2 on the ratio µh/M .

The one-loop coefficient c1 vanishes for µh/M ≈ 1.569 and µh/M ≈ 0.142. The second

solution is in a region of very small µh, where the expansion coefficients vary strongly and

where the ln2(M2/µ2
h) and ln(M2/µ2

h) terms have opposite sign. We will thus discard it.

In the region around the first solution the two-loop coefficient c2 is stable and positive.

In our numerical analysis we will vary µh between M and 2M , taking µh = 3M/2 as the

default choice.

The matching scale µs must be determined separately for each process, since it is

sensitive to the integration range of the z variable (which depends on τ and Y ) and to

the shape of the PDFs. In figure 5, we plot the relative contributions to the cross section

dσ/dM2 (normalized to the total cross section) arising from the one- and two-loop terms

in the soft function s̃DY as a function of µs. We choose M = 20 GeV and consider different

values of τ = M2/s between 0.01 and 0.7. The plots have been obtained by setting

the factorization scale equal to M and using MRST2004NNLO parton densities [30]. We

have checked that virtually indistinguishable results are obtained when µf is varied by a

factor of 2. Notice that with increasing τ values the regions where the one- and two-loop

contributions are of modest size shift toward lower µs values. To be specific, we consider

two criteria for a good convergence of the perturbative expansion (see the left plot in the

figure):
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Figure 6: Scale-setting results for the soft matching scale µs for different values of τ = M2/s

and Drell-Yan masses M = 100, 50, 20, 10GeV. The lighter curves correspond to lower scales. The

upper set of curves corresponds to convergence criterion I, the lower one to criterion II.

I. Starting from a high scale, we determine the value of µs at which the one-loop

correction drops below 15%.

II. We choose the value of µs for which the one-loop contribution is minimal.

Note that with either choice the two-loop corrections at the corresponding µs values are very

small, indicating that the first two terms in the perturbation series for the soft function are

well behaved for the same choice of scale. The same analysis can be repeated for different

masses of the Drell-Yan pair.

The resulting values for the soft scale µs determined using these convergence criteria

are shown in figure 6, where we consider the choices M = 10, 20, 50, 100 GeV. To a

good approximation the curves for the ratio µs/M as a function of τ exhibit scaling, i.e.,

they are almost independent of M . We thus obtain a relation of the form µs/M = g(τ).

Small scaling violations arise from the scale dependence of the PDFs and of the running

coupling in the perturbative expansion of the soft function. Our numerical results are well

reproduced by the empirical functions

µI
s =

M(1 − τ)

1 + 7τ
and µII

s =
M(1 − τ)√
6 + 150τ

(5.2)

for the two criteria. Their form should not be taken too seriously except to note that for

τ → 1 both functions approach µs = const. ×M(1 − τ), as required by the resummation

formula (4.18) for the K-factor valid near the true endpoint. Indeed, the smallness of the

constants in the two cases (0.125 and 0.080, respectively) is in good agreement with our

estimate in (4.21). It results from the dynamical suppression provided by the PDFs. In

the opposite limit τ → 0, both forms yield µs = const. ×M with an O(1) constant, as

required by the fact that there is only a single physical scale in this case. Below we will

vary the soft scale between µI
s and µII

s and, somewhat arbitrarily, use the average of the

two scales as the default choice.
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The same analysis can be carried out for the double differential decay rate d2σ/dMdY ,

and it leads to similar results. In general, one finds that at central rapidity (Y = 0) the

resulting values for the soft matching scale are higher by about 20% than in the case of

dσ/dM2, while at larger rapidity they are lower, so that on average, after integration over

Y , the results for the total cross section are reproduced.

5.2 Scale dependence and impact of resummation

We now proceed to study the stability of our resummed expression for the Drell-Yan cross

section, using scale dependence as an estimator of yet unknown higher-order perturbative

effects. We vary the matching scales µh and µs about the default values µh = 1.5M and

µs = (µI
s + µII

s )/2 determined in the previous section. To simplify comparisons with the

literature we adopt the conventional choice µf = M for the factorization scale, at which

the PDFs are renormalized. From the point of view of effective field theory it would be

more natural to choose a lower value for µf , given that the cross section is sensitive to

physics at scales much below the hard scale M . We will see, however, that our results are

very stable with respect to variations of the factorization scale, so that the choice of the

default value is not particularly important. Since our focus is on the behavior of different

perturbative approximations to the hard-scattering kernel, we use the same set of PDFs

(MRST04NNLO) throughout the analysis.

Our results are shown in the first three plots in figure 7, in which we study the Drell-

Yan K-factor defined in (4.17) for M = 20 GeV and various values of τ = M2/s. In the

calculation of the K-factor we keep the factorization scale µf = M fixed in the leading-

order expression in the denominator, even when µf is varied in the numerator. For the

time being we only include the leading terms in the z → 1 limit, corresponding to the

result (4.13). Adding the small power-suppressed corrections would not change any of our

conclusions. We observe an excellent convergence of the perturbative expansion for the

cross section after resummation. The bands corresponding to the LO, NLO, and NNLO

approximations overlap, and the dependence on the matching scales µh and µs becomes

negligible beyond LO, indicating that the residual perturbative uncertainty is very small.

The third plot, showing the dependence on the factorization scale µf , requires some

comments. We first note that in the approximation where we resum the leading singular

terms in the partonic cross section near z → 1 but neglect power-suppressed terms, our

results for the cross section are no longer strictly independent of the factorization scale µf .

In order to make them formally scale invariant one should add back the power-suppressed

terms in fixed-order perturbation theory. Despite this, we find that the resummation

greatly reduces the µf dependence compared with the fixed-order calculation, for which

results are shown in the last plot in the figure. (The fixed-order results can be obtained

by setting µh = µs = µf in the resummed expression.) The reason is that already the LO

result after resummation compensates the leading scale dependence of the PDFs through

the µf dependence of the functions aγφ(µs, µf ) and η = 2aΓ(µs, µf ) in (4.13). Indeed, we

see that for modest values 0 < τ < 0.2 the dependence on the factorization scale after

resummation is almost absent already at LO. On the other hand, there is a sizable scale

dependence in the fixed-order calculation even beyond LO. We emphasize that there is
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Figure 7: Dependence of the resummed Drell-Yan cross section for M = 20GeV on the scales

µh, µs, and µf . The bands show the K-factor obtained at LO (light), NLO (medium), and NNLO

(dark). The last plot shows for comparison the µf dependence in fixed-order perturbation theory.

very little experimental information about the relevant parton densities (the sea-quark

distributions, in particular) at large x values, and as a consequence one cannot trust the

numerical values of the K-factor at values τ > 0.2. Indeed, we find that the results for

the cross section at τ = 0.3 obtained using different sets of PDFs (MRST04NNLO [30],

MRST01NNLO [52], and CTEQ6.5 [53]) differ by a factor 4.

In figure 2, we observed that the Drell-Yan cross section is dominated by the singular

threshold terms. We now assess whether the threshold contribution contains large loga-

rithms which should be resummed. In figure 8, we compare the result for the total cross

section obtained with the default values of the matching scales µh and µs to the evaluation

of the threshold terms in fixed-order perturbation theory. The differences between the two

sets of curves show the effect of the resummation. For illustration purposes we consider two

examples. The first is the case of pp collisions at
√
s = 38.76 GeV, corresponding to the en-

ergy of the fixed-target experiment E866/NuSea [18]. In this experiment Drell-Yan masses

in the ranges 4.2-8.7 GeV and 10.85-16.85 GeV have been observed. As a second example

we consider Drell-Yan production via a virtual photon at the LHC energy
√
s = 14 TeV

(including the Z0 channel would not alter our results for the K-factor significantly). The

figure shows that resummation accelerates the convergence of the perturbative expansion.

On the other hand, the plots also show that the most important logarithmic corrections
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Default values are used for all scales.

are contained in the fixed-order NNLO results, at least for moderate lepton-pair masses.

For large masses the resummation becomes more important. In the first example, the

resummed cross section is about 8% (28%) larger than the fixed-order result at NNLO

(NLO) for M = 16.85 GeV. At the LHC, on the other hand, resummation effects beyond

the NNLO fixed-order result remain small even at very large values of M .

5.3 Rapidity distribution and cross section at
√
s = 38.76 GeV

As a final application, we now return to the rapidity distribution in Drell-Yan production

at
√
s = 38.76 GeV. As mentioned in the Introduction, in this case large resummation

effects were found for M = 8 GeV [15] even though τ ≈ 0.04 is very small. These effects

were claimed to reduce the NLO fixed-order cross section by about 30%. Fixed-order

predictions for the rapidity distribution up to NNLO were discussed in [5, 6]. Here we

present results for the two cases M = 8 and 16 GeV. In order to obtain the best possible

predictions we combine our resummed result for the cross section with the power-suppressed

terms calculated in fixed-order perturbation theory. In our approach this matching can be

implemented in a straightforward way as follows:

dσcombined

dM2dY
=

dσthresh

dM2dY

∣∣∣∣
µh,µs,µf

+

(
dσfixed order

dM2dY

∣∣∣∣
µf

− dσthresh

dM2dY

∣∣∣∣
µh=µs=µf

)
. (5.3)

In figure 9, we compare our RG-improved results with the fixed-order results, varying the

scales over the ranges M/2 < µf < 2M , M < µh < 2M , and µI
s < µs < µII

s . The bands

reflect the variations about the default value. In the fixed-order case only the first variation

is relevant, while in the resummed case we add the individual variations in quadrature.

We observe again that resummation significantly accelerates the convergence of the

perturbative expansion. Moreover, even though in the resummed case we include the

scale dependence from the variation of three different scales, the combined uncertainty

at NLO and NNLO is significantly smaller than in the fixed-order case. Also, given the

better overlap of the bands in the resummed case, our error estimates appear to be more
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Figure 9: Fixed-order (Y < 0) versus resummed (Y > 0) predictions for the rapidity distribution

at
√
s = 38.76GeV and two values of M , at different orders in perturbation theory. The bands

reflect the combined scale dependence. LO bands are light, NLO bands are medium, NNLO bands

are dark.

conservative. As a final comment, we note that for M = 8GeV the resummed results at

NLO and NNLO are consistent within errors with the fixed-order results, indicating that

threshold resummation is not an important effect. This is in stark contrast to the conclusion

reached in [15]. For the higher mass M = 16 GeV, the two NNLO bands are consistent

with each other at central rapidity, but the resummed result is significantly higher than

the fixed-order prediction for Y & 0.3. For the integrated cross section at this value of M ,

threshold resummation enhances the fixed-order value by about 7%. This can be seen from

table 2, which shows our final predictions for the integrated cross section dσ/dM2. Besides

the results obtained with and without resummation, we also give the contributions of the

resummed threshold terms alone, corresponding to the first term in (5.3).

5.4 Resummation in moment space

Traditionally, resummation is performed in moment rather than momentum space [9, 10].

For the Drell-Yan cross section integrated over rapidity one takes moments in τ at fixed

M :

σN =

∫ 1

0
dτ τN−1 dσ

dM2
. (5.4)

For the moment-space analysis of the rapidity distribution one performs a Fourier transform

in the rapidity in addition to taking moments in τ [13, 15]. In the following, we will restrict

ourselves to the integrated cross section for simplicity. Using the representation (2.12), the

cross section in moment space factorizes as

σN =
4πα2

3NcM4

∑

q

e2q

[
f

q/N1

N+1 f
q̄/N2

N+1 + (q ↔ q̄)
]
CN+1(M

2, µf ) , (5.5)

where the moments of the hard-scattering coefficient and the PDFs are defined in analogy

with (5.4). In order to accomplish the resummation for the moments of the hard-scattering

coefficient, we go back to expression (2.15) and use that [54]
∫ 1

0
dz zN−1 S(M(1 − z), µ) = s̃DY

(
ln

M2

N̄2µ2
, µ
)

+O
( 1

N

)
, (5.6)
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M Method LO NLO NNLO

8 GeV combined 0.436+0.062
−0.071 0.493+0.011

−0.014 0.512+0.002
−0.004

threshold 0.436+0.062
−0.071 0.482+0.008

−0.015 0.501+0.009
−0.010

fixed-order 0.299+0.051
−0.040 0.449+0.051

−0.041 0.505+0.021
−0.025

16 GeV combined 1.49+0.17
−0.21 1.61+0.01

−0.04 1.68+0.01
−0.04

threshold 1.49+0.17
−0.21 1.59+0.01

−0.04 1.63+0.01
−0.01

fixed-order 0.76+0.21
−0.15 1.29+0.19

−0.18 1.57+0.08
−0.12

Table 2: Predictions for the Drell-Yan cross section dσ/dM2 for
√
s = 38.76GeV and two values

of the invariant mass M of the lepton pair. Units are pb/GeV2 and fb/GeV2, respectively.

with N̄ = eγEN . We then insert the solution to the RG evolution for the function s̃DY,

which as shown in [22] obeys a RG equation analogous to (4.1). This leads to

CN (M2, µf ) = |CV (−M2, µh)|2 U(M,µh, µs, µf ) N̄−2η s̃DY

(
ln

M2

N̄2µ2
s

, µs

)
. (5.7)

Given the simple N dependence of this result, we can transform it back to momentum

space analytically using

1

2πi

∫ c+i∞

c−i∞
dN z−N N̄−2η = (− ln z)−1+2η e

−2γEη

Γ(2η)

=
√
z

z−η

(1 − z)1−2η

e−2γEη

Γ(2η)

[
1 +O

(
(1 − z)2

)]
(5.8)

and the fact that

N̄−2η s̃DY

(
ln

M2

N̄2µ2
s

, µs

)
= s̃DY

(
ln
M2

µ2
s

+ ∂η , µs

)
N̄−2η . (5.9)

Dropping the corrections of order (1 − z)2 in the last step in (5.8), the inverted moment-

space result can be written in a form that is identical to (4.13) up to an overall factor√
z, which amounts to a first-order power correction in the threshold region. In the limit

µh = µs = µf , in which the resummed expression reproduces the leading singular terms in

the fixed-order result, the momentum-space formulation derived in the present work gives

the singular distributions in the hard-scattering kernel in precisely the form in which they

appear in (2.9) and (A.1). The large-N expansion in Mellin space, on the other hand, gives

an expression that is obtained from this by the replacement

[
Ln

z

1 − z

]

+

→
[

lnn(M2 ln2 z/µ2
f )

− ln z

]

+

, (5.10)

with Lz = ln[M2(1 − z)2/µ2
fz]. While the two expressions agree up to power-suppressed

terms near the partonic threshold, they differ significantly for small z. This leads to large

corrections when matching with the fixed-order results in cases where the small-z region is

relevant.

– 28 –



J
H
E
P
0
7
(
2
0
0
8
)
0
3
0

2 4 6 8 10

2

4

6

8

10

N

C
N
/C

L
O

N
=

1

Figure 10: Comparison of the moment-space hard-scattering coefficient (5.7) at µh = µf = M and

µs = M/N with M = 8GeV (solid) with the expression (5.11) used in the traditional approach [55]

(dashed). The light, medium, and dark lines correspond to LO, NLO, and NNLO, respectively.

The dashed curves are barely visible because they are almost on top of the solid lines.

In the traditional approach to resummation, the moment-space result is written as

CN (M2, µf ) = g0(M
2, µf ) exp[GN (M2, µf )] +O

( 1

N

)
, (5.11)

where g0 collects the N -independent contributions. The resummation exponent has the

form

GN (M2, µf ) =

∫ 1

0
dz

zN−1 − 1

1 − z

[∫ (1−z)2M2

µ2
f

dk2

k2
2A (αs(k)) +D (αs(M(1 − z)))

]
. (5.12)

The coefficient A(αs) is the cusp anomalous dimension, while D(αs) is related to the

anomalous dimension of the soft function. The resummation exponent evaluated to NNLO

can be found in [55 – 59]. Note that (5.12) is not well defined as it stands, since the

coupling constant is integrated over the Landau pole. The resulting ambiguity corresponds

to a spurious first-order power correction in ΛQCD/MX , while on general grounds the cross

sections is expected to receive power corrections starting at second order [60]. For DIS,

we have shown that for the scale choices µh = M and µs = M/N , which are implicit

in the traditional scheme, the two approaches to resummation are equivalent up to 1/N

corrections, and we have derived the relationship between the anomalous dimensions in the

effective theory and the resummation coefficients in the traditional approach [22]. With

the same technique, we obtain

e2γE∇ Γ(1+2∇)
D(αs)

2
= γW (αs)+∇ ln s̃DY(0, µ)−e

2γE∇ Γ(1 + 2∇) − 1

∇ Γcusp(αs) , (5.13)

where αs = αs(µ), and ∇ = d/d lnµ2 = [β(αs)/2] ∂/∂αs. Using this relation, we reproduce

the perturbative expression for the function D(αs) given in [55, 56] up to third order in
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Figure 11: Left: Results for the Drell-Yan K-factor obtained using threshold resummation

in momentum-space (solid) and moment space (dashed). The default scale choices µh = 1.5M ,

µs = (µI
s + µII

s )/2, and µf = M are used in both cases. Right: Moment-space results for the K-

factor obtained from (5.7) with scale choices µh = 1.5M and µs = M/N (dashed) and the default

choices µh = 1.5M and µs = (µI
s + µII

s )/2 (solid). The light, medium, and dark lines correspond to

LO, NLO, and NNLO, respectively.

α3
s. In particular, for the first nonzero term we find

D(αs) =
(
2γW

1 + 2π2CFβ0

)(αs

4π

)2
+O(α3

s) . (5.14)

In figure 10, we compare our moment-space expression (5.7) for the hard-scattering

kernel CN evaluated with the scale choices µh = M and µs = M/N with expression (5.11)

evaluated as described in [55]. The results are almost indistinguishable, demonstrating that

the 1/N -suppressed differences between the two formulations are numerically very small,

and that the traditional approach to threshold resummation can be viewed as a special

case of our RG-based framework.

The fact that the moment-space resummation approach differs from the momentum-

space approach by first-order corrections in (1 − z) leads to visible numerical effects. In

order to illustrate this we take the inverse Mellin transformation of (5.5) to compute the

Drell-Yan K-factor. For simplicity, we fit the polynomial form ff(y) = ya(1−y)b(1+cy+dy2)

to the parton luminosity function defined in (2.14), so that the product of the moments of

the PDFs in (5.5) can be evaluated in closed form. The first plot in figure 11 shows that for

the same choices of matching scales the moment-space approach leads to somewhat larger

results for the K-factor than the momentum-space approach, and that the convergence is

slightly better in the second case.

In the traditional moment-space approach based on expression (5.12) one implicitly

makes the scale choice µs = M/N , which leads to a Landau pole at N ∼ M/ΛQCD in

the Mellin inversion. To see how the results obtained with this choice compare with our

default results we adopt the so-called minimal prescription [61], which amounts to choosing

an inversion contour in the N -plane that does not include this pole. When this is done, we

find that the moment-space formula (5.7) evaluated with µh = 1.5M and µs = M/N gives

numerical results similar to those found using our default scale choices once we go beyond

leading order. This is illustrated in the right plot in figure 11.
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6. Conclusions

We have presented a detailed analysis of threshold resummation for Drell-Yan production.

Instead of the conventional Mellin moment formalism, we have performed the resummation

directly in momentum space, using RG evolution. We have obtained analytic expressions

for the resummed hard-scattering kernels that are free of the Landau-pole ambiguities

inherent in the traditional approach. After deriving the necessary matching coefficients

and anomalous dimensions from known perturbative results in the literature, we have

performed the resummation for the cross section and rapidity distribution at NNLO in

RG-improved perturbation theory, corresponding to N3LL accuracy.

The main goal of this work was to address the question to what extent resummation can

be phenomenologically relevant given that in all practical applications the true threshold

region is experimentally not accessible, because the parton distributions fall off very steeply

at large x. It has been argued in the literature that precisely this fall-off forces the Drell-

Yan process to the partonic threshold region, in which large logarithmic corrections arise.

Our analysis confirms the existence of this effect and quantifies its importance. In the

true endpoint region, we find that the scale of soft radiation is an order of magnitude

smaller than the naive estimate. The extra suppression factor is given by the sum of

the exponents of the fall-off of the quark and anti-quark distributions near x = 1. On

the other hand, for very small lepton-pair masses this effect becomes inoperative because

the fall-off of the parton distributions is not very steep at low x. An analysis of the

convergence of perturbation theory in the intermediate region shows that resummation

effects become relevant for M larger than about 0.4
√
s. At the largest measured Drell-

Yan masses resummation effects can thus be significant. In the case of the experiment

E866/NuSea, a fixed-target experiment with pp collisions at
√
s = 38.76 GeV, these effects

increase the NNLO (NLO) cross section by 7% (25%) at M = 16 GeV.

We do not confirm the recent claim of large negative resummation effects for the

rapidity distribution measured in the E866/NuSea experiment at M = 8 GeV [15]. We find

that the fixed-order NNLO threshold contribution is positive and a good approximation

to the full NNLO correction. Higher-order terms beyond NNLO turn out to be negligible,

so that it is unnecessary to resum them. To check whether the large effect seen in [15]

could be an artifact of the moment-space formalism, we have applied our approach also in

moment space and showed that it encompasses the traditional moment-space approach. We

find that the two methods give compatible results, and that in both schemes resummation

increases the cross section. The Drell-Yan cross section is dominated by the contribution of

the threshold region even at small masses of the lepton pair. For example, for M = 8GeV

the threshold terms give rise to 93% of the NLO correction to the total cross section and

97% of the NNLO contribution. If this is a more generic feature of hard cross sections,

then threshold resummation techniques provide an efficient way to obtain the dominant

part of the higher-order corrections.

Perhaps the most important outcome of our analysis is a quantitative understanding

of the emergence of an effective physical scale characterizing the soft radiation in the

Drell-Yan process. This scale is generated through an intricate interplay of dynamical and
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kinematical effects. It will be interesting to explore how the same mechanism affects other

collider processes such as Higgs production at the Tevatron and LHC. Furthermore, it would

be useful to analyze resummation for tt̄-production, which is phenomenologically relevant,

since the Tevatron now produces top-quark pairs with quite high invariant masses. There

was some controversy on how to best perform the resummmation in this case [70, 71, 61, 72].

It would be interesting to revisit the issue using effective field-theory methods.
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A. Two-loop coefficients of the leading singular terms

The leading singular terms in the fixed-order perturbative expressions for the hard-

scattering kernels Cij can be derived by using the perturbative expansions of the hard

and soft functions in (2.15). In this way, we obtain for the coefficients Pi(z) in (2.9)

PF (z) = δ(1 − z)

[
9

8
L2 +

(
−93

16
+

3π2

4
+ 5ζ3

)
L+

511

64
− 33π2

16
+

23π4

120
− 15ζ3

4

]

+ 16ζ3

[
1

1 − z

]

+

+

(
−L2 + 3L− 8 − 2π2

3

)[
Lz

1 − z

]

+

+

[
L3

z

1 − z

]

+

,

PA(z) = δ(1 − z)

[
−11

16
L2 +

(
193

48
− 11π2

36
− 3ζ3

2

)
L− 1535

192
+

47π2

36
− 23π4

720
+

43ζ3
12

]

+

(
−101

27
+

11π2

18
+

7ζ3
2

)[
1

1 − z

]

+

+

(
67

18
− π2

6

)[
Lz

1 − z

]

+

− 11

12

[
L2

z

1 − z

]

+

,

Pf (z) = δ(1 − z)

[
1

4
L2 +

(
−17

12
+
π2

9

)
L+

127

48
− 4π2

9
+
ζ3
3

]

+

(
28

27
− 2π2

9

)[
1

1 − z

]

+

− 10

9

[
Lz

1 − z

]

+

+
1

3

[
L2

z

1 − z

]

+

. (A.1)

As before, we use the abbreviations L = ln(M2/µ2
f ) and Lz = ln[M2(1 − z)2/µ2

fz]. If

desired, the plus distributions involving powers of Lz can be reduced to distributions of

the form [lnn(1 − z)/(1 − z)]+ using the identity

[f(z) g(z)]+ = f(z) [g(z)]+ − δ(1 − z)

∫ 1

0
dz′ f(z′)

[
g(z′)

]
+
. (A.2)

B. Matching coefficients and anomalous dimensions

For completeness we list the perturbative expansions of the various matching coefficients

and anomalous dimensions required to evaluate our RG-improved result (4.13) at NNLO.
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B.1 Two-loop matching coefficients

The matching conditions for the Wilson coefficient CV evaluated at time-like momentum

transfer can be obtained by analytic continuation from the corresponding expression valid

at space-like momentum transfer. Using the known two-loop result for the on-shell QCD

form factor [62 – 65], we find [22]

CV (−M2 − iǫ, µ) = 1 +
CFαs

4π

(
−L2 + 3L− 8 +

π2

6

)
(B.1)

+CF

(αs

4π

)2
[CFHF + CAHA + TFnfHf ] ,

where

HF =
L4

2
− 3L3 +

(
25

2
− π2

6

)
L2 +

(
−45

2
− 3π2

2
+ 24ζ3

)
L+

255

8
+

7π2

2
− 83π4

360
− 30ζ3 ,

HA =
11

9
L3 +

(
−233

18
+
π2

3

)
L2 +

(
2545

54
+

11π2

9
− 26ζ3

)
L

− 51157

648
− 337π2

108
+

11π4

45
+

313

9
ζ3 ,

Hf = −4

9
L3 +

38

9
L2 +

(
−418

27
− 4π2

9

)
L+

4085

162
+

23π2

27
+

4

9
ζ3 , (B.2)

and L = ln(M2/µ2)−iπ. This result agrees with the corresponding expression given in [36].

The matching condition for the function s̃DY can be derived most easily using rela-

tion (4.11), which relates it to the perturbative expansion of the position-space Wilson

loop ŴDY at time-like separation. We can then use the explicit two-loop expression for the

position-space Wilson loop obtained in [39]. To this end, we have obtained the fourth-order

coefficient in the expansion of a certain Appell hypergeometric function,

F2

(
1, 1 + ǫ,−2ǫ
2 + ǫ, 1 − 2ǫ

∣∣∣ 1, 1
)

= −1 + ǫ

2ǫ

(
1 − π2

3
ǫ2 − 14ζ3ǫ

3 − 5π4

18
ǫ4 + . . .

)
. (B.3)

The resulting two-loop expression for the soft function reads

s̃DY(L,µ) = 1 +
CFαs

4π

(
2L2 +

π2

3

)
+ CF

(αs

4π

)2
[CFWF + CAWA + TFnfWf ] , (B.4)

where

WF = 2L4 +
2π2

3
L2 +

π4

18
=

1

2

(
2L2 +

π2

3

)2

,

WA = −22

9
L3 +

(
134

9
− 2π2

3

)
L2 +

(
−808

27
+ 28ζ3

)
L+

2428

81
+

67π2

54
− π4

3
− 22

9
ζ3 ,

Wf =
8

9
L3 − 40

9
L2 +

224

27
L− 656

81
− 10π2

27
+

8

9
ζ3 . (B.5)

Note that the Cn
F terms exponentiate, which is a consequence of the non-abelian expo-

nentiation theorem for Wilson loops [66, 67]. Our result for the function s̃DY agrees with

a corresponding expression entering in the moment-space resummation approach studied

in [36].
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B.2 Three-loop anomalous dimensions

Here we list expressions for the anomalous dimensions and the QCD β-function, quoting

all results in the MS renormalization scheme. We define the expansion coefficients of the

anomalous dimensions and the QCD β-function as

Γcusp(αs) = Γ0
αs

4π
+ Γ1

(αs

4π

)2
+ Γ2

(αs

4π

)3
+ . . . ,

β(αs) = −2αs

[
β0

αs

4π
+ β1

(αs

4π

)2
+ β2

(αs

4π

)3
+ . . .

]
, (B.6)

and similarly for the other anomalous dimensions.

The expansion of the cusp anomalous dimension Γcusp to two-loop order was obtained

some time ago [46], while recently the three-loop coefficient has been calculated in [49].

For the four-loop coefficient Γ3 we use the Padé approximant Γ3 = Γ2
2/Γ1. The results are

Γ0 = 4CF ,

Γ1 = 4CF

[(
67

9
− π2

3

)
CA − 20

9
TFnf

]
,

Γ2 = 4CF

[
C2

A

(
245

6
− 134π2

27
+

11π4

45
+

22

3
ζ3

)
+ CATFnf

(
−418

27
+

40π2

27
− 56

3
ζ3

)

+ CFTFnf

(
−55

3
+ 16ζ3

)
− 16

27
T 2

Fn
2
f

]
,

Γ3 ≈ 7849, 4313, 1553 for nf = 3, 4, 5 . (B.7)

The anomalous dimension γV can be determined up to three-loop order from the partial

three-loop expression for the on-shell quark form factor in QCD, which has recently been

obtained in [65]. We find

γV
0 = −6CF ,

γV
1 = C2

F

(
−3 + 4π2 − 48ζ3

)
+CFCA

(
−961

27
− 11π2

3
+ 52ζ3

)
+ CFTFnf

(
260

27
+

4π2

3

)
,

γV
2 = C3

F

(
−29 − 6π2 − 16π4

5
− 136ζ3 +

32π2

3
ζ3 + 480ζ5

)

+ C2
FCA

(
−151

2
+

410π2

9
+

494π4

135
− 1688

3
ζ3 −

16π2

3
ζ3 − 240ζ5

)

+ CFC
2
A

(
−139345

1458
− 7163π2

243
− 83π4

45
+

7052

9
ζ3 −

88π2

9
ζ3 − 272ζ5

)

+ C2
FTFnf

(
5906

27
− 52π2

9
− 56π4

27
+

1024

9
ζ3

)

+ CFCATFnf

(
−34636

729
+

5188π2

243
+

44π4

45
− 3856

27
ζ3

)

+ CFT
2
Fn

2
f

(
19336

729
− 80π2

27
− 64

27
ζ3

)
. (B.8)
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The anomalous dimension γφ is know to three-loop order from the NNLO calculation of

the Altarelli-Parisi splitting functions [49]. The expansion coefficients are

γφ
0 = 3CF ,

γφ
1 = C2

F

(
3

2
− 2π2 + 24ζ3

)
+ CFCA

(
17

6
+

22π2

9
− 12ζ3

)
− CFTFnf

(
2

3
+

8π2

9

)
,

γφ
2 = C3

F

(
29

2
+ 3π2 +

8π4

5
+ 68ζ3 −

16π2

3
ζ3 − 240ζ5

)

+ C2
FCA

(
151

4
− 205π2

9
− 247π4

135
+

844

3
ζ3 +

8π2

3
ζ3 + 120ζ5

)

+ C2
FTFnf

(
−46 +

20π2

9
+

116π4

135
− 272

3
ζ3

)

+ CFC
2
A

(
−1657

36
+

2248π2

81
− π4

18
− 1552

9
ζ3 + 40ζ5

)
(B.9)

+ CFCATFnf

(
40− 1336π2

81
+

2π4

45
+

400

9
ζ3

)
+CFT

2
Fn

2
f

(
−68

9
+

160π2

81
− 64

9
ζ3

)
.

Using these results, one can compute the expansion coefficients for the anomalous dimension

γW of the Drell-Yan soft function from the relation γW = 2γφ + γV . This yields

γW
0 = 0 ,

γW
1 = CFCA

(
−808

27
+

11π2

9
+ 28ζ3

)
+ CFTFnf

(
224

27
− 4π2

9

)
. (B.10)

We do not list the three-loop coefficient.

Finally, the expansion coefficients for the QCD β-function to four-loop order are

β0 =
11

3
CA − 4

3
TFnf ,

β1 =
34

3
C2

A − 20

3
CATFnf − 4CFTFnf , (B.11)

β2 =
2857

54
C3

A +

(
2C2

F − 205

9
CFCA − 1415

27
C2

A

)
TFnf +

(
44

9
CF +

158

27
CA

)
T 2

Fn
2
f ,

β3 =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf +

(
50065

162
+

6472

81
ζ3

)
n2

f +
1093

729
n3

f .

The value of β3 is taken from [68] and corresponds to Nc = 3 and TF = 1
2 .

B.3 Renormalization-group functions

We now give the perturbative expansions of the functions S and aΓ defined in (4.3), working

consistently at NNLO in RG-improved perturbation theory. At this order we need to keep

terms through O(α2
s) in the final expressions. The resulting expression for aΓ is given by

aΓ(ν, µ) =
Γ0

2β0

{
ln
αs(µ)

αs(ν)
+

(
Γ1

Γ0
− β1

β0

)
αs(µ) − αs(ν)

4π

+

[
Γ2

Γ0
− β2

β0
− β1

β0

(
Γ1

Γ0
− β1

β0

)]
α2

s(µ) − α2
s(ν)

32π2
+ . . .

}
. (B.12)
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Similar expressions with the Γi replaced by the coefficients γV
i or γφ

i hold for the functions

aγV and aγφ , respectively. The NNLO expression for the Sudakov exponent S is more

complicated. It reads [22]

S(ν, µ) =
Γ0

4β2
0

{
4π

αs(ν)

(
1 − 1

r
− ln r

)
+

(
Γ1

Γ0
− β1

β0

)
(1 − r + ln r) +

β1

2β0
ln2 r

+
αs(ν)

4π

[(
β1Γ1

β0Γ0
− β2

β0

)
(1 − r + r ln r) +

(
β2

1

β2
0

− β2

β0

)
(1 − r) ln r

−
(
β2

1

β2
0

− β2

β0
− β1Γ1

β0Γ0
+

Γ2

Γ0

)
(1 − r)2

2

]

+

(
αs(ν)

4π

)2
[(

β1β2

β2
0

− β3
1

2β3
0

− β3

2β0
+
β1

β0

(
Γ2

Γ0
− β2

β0
+
β2

1

β2
0

− β1Γ1

β0Γ0

)
r2

2

)
ln r

+

(
Γ3

Γ0
− β3

β0
+

2β1β2

β2
0

+
β2

1

β2
0

(
Γ1

Γ0
− β1

β0

)
− β2Γ1

β0Γ0
− β1Γ2

β0Γ0

)
(1 − r)3

3

+

(
3β3

4β0
− Γ3

2Γ0
+
β3

1

β3
0

− 3β2
1Γ1

4β2
0Γ0

+
β2Γ1

β0Γ0
+

β1Γ2

4β0Γ0
− 7β1β2

4β2
0

)
(1 − r)2

+

(
β1β2

β2
0

− β3

β0
− β2

1Γ1

β2
0Γ0

+
β1Γ2

β0Γ0

)
1 − r

2

]
+ . . .

}
, (B.13)

where r = αs(µ)/αs(ν). Whereas the three-loop anomalous dimensions and β-function are

required in (B.12), the expression for S also involves the four-loop coefficients Γ3 and β3.

C. Cut diagrams in the Keldysh formalism

To perform the effective theory analysis of the process, we would like to have a path-

integral definition of the hadronic quantity of interest. In the case of DIS (and also for

inclusive B-decays), one considers the discontinuity of forward matrix elements of time-

ordered products of the electroweak currents and studies their factorization properties. The

Drell-Yan cross section cannot be written in a similar form. The reason is that not all cuts

of the relevant Feynman graphs correspond to the same physical process. For example, in

addition to the contribution from the cut indicated in figure 12, the discontinuity of the

same diagram also gets a contribution from a cut through the triangle loop on the left,

which describes p+ p̄→ X with a virtual lepton pair.

A path-integral method for the direct evaluation of cut diagrams is the Keldysh (or

time-loop) formalism [37, 38]. Let us illustrate the method for a scalar field theory with

field φ(x). Instead of the usual action, where one integrates over time from t = −∞ . . .∞,

one considers a path integral with an action

S(φ) =

∫

C
dtL(φ) , (C.1)

where the contour C first runs from t = −∞+ iδ . . .∞+ iδ and then back, with a negative

imaginary part, along the contour shown in figure 13. When evaluating expectation values
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Figure 12: Example of a cut diagram contribution to the Drell-Yan process.

of fields, one needs to specify on which part of the contour the fields reside. We denote

the fields living on the first half of the contour by φ+(x) ≡ φ(x + iδ) and the ones on the

second half by φ−(x) ≡ φ(x−iδ). The path-integral expectation values of fields correspond

to path-ordered vacuum expectation values. Since the fields φ+ are positioned at earlier

points along the contour, they are to the right of all fields φ−. Furthermore path-ordering

translates into anti-time-ordering on the second part of the contour, so that we find

∫
Dφφ+(x1) . . . φ+(xn)φ−(x1) . . . φ−(xm) exp {iS(φ)}

= 〈0|T {φ(x1) . . . φ(xm)}T {φ(x1) . . . φ(xn)} |0〉 . (C.2)

Here T denotes anti-time-ordering. Note that under a field redefinition φ(x) →
f(φ(x))φ(x), the plus and minus fields transform separately φ±(x) → f(φ±(x))φ±(x).

This is relevant when one uses a field redefinition to decouple the soft gluon fields from the

quark fields in the current operator.

The Keldysh formalism is useful, because it gives a path integral formulation of squared

amplitudes, e.g.

∑

X

(2π)4δ(PX − P ) |〈X|T {φ(x1) . . . φ(xn)} |0〉|2

=

∫
d4x e−iP ·x 〈0|T {φ(x1 + x) . . . φ(xn + x)}T {φ(x1) . . . φ(xn)} |0〉 , (C.3)

which is then rewritten as an expectation value of φ± fields using (C.2).

For our perturbative analysis, we need the Feynman rules to calculate matrix elements

of the form (C.2). The rules are simple: those for the field φ+ are the usual Feynman rules

and those for φ− are the complex conjugate of the usual rules. Since all interactions are

local, there are no vertices involving both φ+ and φ− fields. The only connection is the
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Figure 13: Contour in the complex t-plane along which the Lagrangian is integrated to obtain the

action in the Keldysh formalism. (To dampen the oscillatory behavior of the path integrand, the

entire contour should further be rotated clockwise by a small angle.)

cut propagator

〈0|φ−(x)φ+(0) |0〉 =

∫
d4p

(2π)4
e−ip·x (2π) δ(p2 −m2) θ(p0) . (C.4)

This expression is familiar from the Cutkosky rules [69] used to extract the contribution of

a given cut to an ordinary Feynman diagram.

Considering the case of the Drell-Yan cross section in (3.1), the relevant quantity

to consider in the Keldysh formalism is the current product Jµ
−(x)J+µ(0), where Jµ

± =∑
q eq q̄±γ

µq±.

References

[1] S.D. Drell and T.-M. Yan, Massive lepton pair production in hadron-hadron collisions at high

energies, Phys. Rev. Lett. 25 (1970) 316 [Erratum ibid. 25 (1970) 902].

[2] G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan

process in QCD, Nucl. Phys. B 157 (1979) 461.

[3] R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α2
s

correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. 644

(2002) 403].

[4] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron

colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206].

[5] C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the

Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192].

[6] C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High-precision QCD at hadron

colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004)

094008 [hep-ph/0312266].

[7] K. Melnikov and F. Petriello, The W boson production cross section at the LHC through

O(α2
s), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182].

[8] K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through

O(α2
s), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070].

[9] G. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl.

Phys. B 281 (1987) 310.

– 38 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C25%2C316
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB157%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB359%2C343
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C88%2C201801
http://arxiv.org/abs/hep-ph/0201206
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C91%2C182002
http://arxiv.org/abs/hep-ph/0306192
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C094008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C094008
http://arxiv.org/abs/hep-ph/0312266
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C96%2C231803
http://arxiv.org/abs/hep-ph/0603182
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C114017
http://arxiv.org/abs/hep-ph/0609070
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB281%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB281%2C310


J
H
E
P
0
7
(
2
0
0
8
)
0
3
0

[10] S. Catani and L. Trentadue, Resummation of the QCD perturbative series for hard processes,

Nucl. Phys. B 327 (1989) 323.

[11] L. Magnea, All order summation and two loop results for the Drell-Yan cross-section, Nucl.

Phys. B 349 (1991) 703.

[12] G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson

loops, Phys. Lett. B 313 (1993) 433.

[13] G. Sterman and W. Vogelsang, Threshold resummation and rapidity dependence, JHEP 02

(2001) 016 [hep-ph/0011289].

[14] A. Mukherjee and W. Vogelsang, Threshold resummation for W-boson production at RHIC,

Phys. Rev. D 73 (2006) 074005 [hep-ph/0601162].

[15] P. Bolzoni, Threshold resummation of Drell-Yan rapidity distributions, Phys. Lett. B 643

(2006) 325 [hep-ph/0609073].

[16] V. Ravindran, J. Smith and W.L. van Neerven, QCD threshold corrections to di-lepton and

Higgs rapidity distributions beyond N2LO, Nucl. Phys. B 767 (2007) 100 [hep-ph/0608308].

[17] V. Ravindran and J. Smith, Threshold corrections to rapidity distributions of Z and W±

bosons beyond N2LO at hadron colliders, Phys. Rev. D 76 (2007) 114004 [arXiv:0708.1689].

[18] NuSea collaboration, J.C. Webb et al., Absolute Drell-Yan dimuon cross sections in

800GeV/c pp and pd collisions, hep-ex/0302019.

[19] D. Appell, G. Sterman and P.B. Mackenzie, Soft gluons and the normalization of the

Drell-Yan cross-section, Nucl. Phys. B 309 (1988) 259.

[20] S. Catani, M.L. Mangano and P. Nason, Sudakov resummation for prompt photon production

in hadron collisions, JHEP 07 (1998) 024 [hep-ph/9806484].

[21] T. Becher and M. Neubert, Threshold resummation in momentum space from effective field

theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050].

[22] T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in

deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228].

[23] C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear

and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336].

[24] C.W. Bauer, D. Pirjol and I.W. Stewart, Soft-collinear factorization in effective field theory,

Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045].

[25] M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft-collinear effective theory and

heavy-to-light currents beyond leading power, Nucl. Phys. B 643 (2002) 431

[hep-ph/0206152].

[26] V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J.

Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781]; e+e− pair annihilation and deep

inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 675 [Yad. Fiz. 15

(1972) 1218].

[27] Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e+e−

annihilation by perturbation theory in quantum chromodynamics. (In russian), Sov. Phys.

JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216].

– 39 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB327%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB349%2C703
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB349%2C703
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB313%2C433
http://jhep.sissa.it/stdsearch?paper=02%282001%29016
http://jhep.sissa.it/stdsearch?paper=02%282001%29016
http://arxiv.org/abs/hep-ph/0011289
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C074005
http://arxiv.org/abs/hep-ph/0601162
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB643%2C325
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB643%2C325
http://arxiv.org/abs/hep-ph/0609073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB767%2C100
http://arxiv.org/abs/hep-ph/0608308
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD76%2C114004
http://arxiv.org/abs/0708.1689
http://arxiv.org/abs/hep-ex/0302019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB309%2C259
http://jhep.sissa.it/stdsearch?paper=07%281998%29024
http://arxiv.org/abs/hep-ph/9806484
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C082001
http://arxiv.org/abs/hep-ph/0605050
http://jhep.sissa.it/stdsearch?paper=01%282007%29076
http://arxiv.org/abs/hep-ph/0607228
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C114020
http://arxiv.org/abs/hep-ph/0011336
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C054022
http://arxiv.org/abs/hep-ph/0109045
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB643%2C431
http://arxiv.org/abs/hep-ph/0206152
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C15%2C438
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C15%2C438
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=YAFIA%2C15%2C781
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SJNCA%2C15%2C675
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=YAFIA%2C15%2C1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=YAFIA%2C15%2C1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C46%2C641
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C46%2C641
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZETFA%2C73%2C1216


J
H
E
P
0
7
(
2
0
0
8
)
0
3
0

[28] G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977)

298.

[29] The code DYrap we used is available at http://www.slac.stanford.edu/˜lance/Vrap/.

[30] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Physical gluons and high-ET jets,

Phys. Lett. B 604 (2004) 61 [hep-ph/0410230].

[31] C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering

factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088].

[32] G.T. Bodwin, S.J. Brodsky and G.P. Lepage, Initial state interactions and the Drell-Yan

process, Phys. Rev. Lett. 47 (1981) 1799.

[33] J.C. Collins, D.E. Soper and G. Sterman, Does the Drell-Yan cross-section factorize?, Phys.

Lett. B 109 (1982) 388.

[34] J.C. Collins, D.E. Soper and G. Sterman, Factorization for short distance hadron-hadron

scattering, Nucl. Phys. B 261 (1985) 104.

[35] J.C. Collins, D.E. Soper and G. Sterman, Soft gluons and factorization, Nucl. Phys. B 308

(1988) 833.

[36] A. Idilbi, X.-d. Ji and F. Yuan, Resummation of threshold logarithms in effective field theory

for DIS, Drell-Yan and Higgs production, Nucl. Phys. B 753 (2006) 42 [hep-ph/0605068].

[37] J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407.

[38] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47

(1964) 1515 [Sov. Phys. JETP 20 (1965) 1018].

[39] A.V. Belitsky, Two-loop renormalization of Wilson loop for Drell-Yan production, Phys. Lett.

B 442 (1998) 307 [hep-ph/9808389].

[40] T. Becher, R.J. Hill, B.O. Lange and M. Neubert, External operators and anomalous

dimensions in soft-collinear effective theory, Phys. Rev. D 69 (2004) 034013

[hep-ph/0309227].

[41] A.V. Manohar, Deep inelastic scattering as x → 1 using soft-collinear effective theory, Phys.

Rev. D 68 (2003) 114019 [hep-ph/0309176].

[42] T. Becher, R.J. Hill and M. Neubert, Soft-collinear messengers: a new mode in soft-collinear

effective theory, Phys. Rev. D 69 (2004) 054017 [hep-ph/0308122].

[43] M. Beneke and T. Feldmann, Multipole-expanded soft-collinear effective theory with

non-abelian gauge symmetry, Phys. Lett. B 553 (2003) 267 [hep-ph/0211358].

[44] J.C. Collins and D.E. Soper, Parton distribution and decay functions, Nucl. Phys. B 194

(1982) 445.

[45] G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the

leading order, Nucl. Phys. B 283 (1987) 342.

[46] I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287

(1992) 169.

[47] M. Neubert, Renormalization-group improved calculation of the B → Xsγ branching ratio,

Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179].

– 40 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB126%2C298
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB126%2C298
http://www.slac.stanford.edu/~lance/Vrap/
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB604%2C61
http://arxiv.org/abs/hep-ph/0410230
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C014017
http://arxiv.org/abs/hep-ph/0202088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C47%2C1799
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB109%2C388
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB109%2C388
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB261%2C104
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB308%2C833
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB308%2C833
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB753%2C42
http://arxiv.org/abs/hep-ph/0605068
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA%2C2%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZETFA%2C47%2C1515
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ZETFA%2C47%2C1515
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C20%2C1018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB442%2C307
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB442%2C307
http://arxiv.org/abs/hep-ph/9808389
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C034013
http://arxiv.org/abs/hep-ph/0309227
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C114019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C114019
http://arxiv.org/abs/hep-ph/0309176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C054017
http://arxiv.org/abs/hep-ph/0308122
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB553%2C267
http://arxiv.org/abs/hep-ph/0211358
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB194%2C445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB194%2C445
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB283%2C342
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB287%2C169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB287%2C169
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC40%2C165
http://arxiv.org/abs/hep-ph/0408179


J
H
E
P
0
7
(
2
0
0
8
)
0
3
0

[48] G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of

Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281].

[49] S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: the

non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192].

[50] M. Neubert, Advanced predictions for moments of the B → Xsγ photon spectrum, Phys. Rev.

D 72 (2005) 074025 [hep-ph/0506245].

[51] S. Alekhin, Parton distribution functions from the precise NNLO QCD fit, JETP Lett. 82

(2005) 628 [Pisma Zh. Eksp. Teor. Fiz. 82 (2005) 710] [hep-ph/0508248].

[52] A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, NNLO global parton analysis,

Phys. Lett. B 531 (2002) 216 [hep-ph/0201127].

[53] W.K. Tung et al., Heavy quark mass effects in deep inelastic scattering and global QCD

analysis, JHEP 02 (2007) 053 [hep-ph/0611254].

[54] T. Becher and M. Neubert, Toward a NNLO calculation of the B̄ → Xsγ decay rate with a

cut on photon energy. II: two-loop result for the jet function, Phys. Lett. B 637 (2006) 251

[hep-ph/0603140].

[55] S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson

production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265].

[56] E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS

data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284].

[57] S. Moch, J.A.M. Vermaseren and A. Vogt, Higher-order corrections in threshold

resummation, Nucl. Phys. B 726 (2005) 317 [hep-ph/0506288].

[58] V. Ravindran, On Sudakov and soft resummations in QCD, Nucl. Phys. B 746 (2006) 58

[hep-ph/0512249].

[59] V. Ravindran, Higher-order threshold effects to inclusive processes in QCD, Nucl. Phys. B

752 (2006) 173 [hep-ph/0603041].

[60] M. Beneke and V.M. Braun, Power corrections and renormalons in Drell-Yan production,

Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452].

[61] S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluons in

hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351].

[62] T. Matsuura and W.L. van Neerven, Second order logarithmic corrections to the Drell-Yan

cross-section, Z. Physik C 38 (1988) 623.

[63] T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order

soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570.
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